File:  [local] / rpl / lapack / lapack / dsysvxx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:09 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYSVXX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYSVXX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsysvxx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsysvxx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsysvxx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
   22: *                           EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
   23: *                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
   24: *                           NPARAMS, PARAMS, WORK, IWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          EQUED, FACT, UPLO
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND, RPVGRW
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       INTEGER            IPIV( * ), IWORK( * )
   34: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   35: *      $                   X( LDX, * ), WORK( * )
   36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
   37: *      $                   ERR_BNDS_NORM( NRHS, * ),
   38: *      $                   ERR_BNDS_COMP( NRHS, * )
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *>    DSYSVXX uses the diagonal pivoting factorization to compute the
   48: *>    solution to a double precision system of linear equations A * X = B, where A
   49: *>    is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices.
   50: *>
   51: *>    If requested, both normwise and maximum componentwise error bounds
   52: *>    are returned. DSYSVXX will return a solution with a tiny
   53: *>    guaranteed error (O(eps) where eps is the working machine
   54: *>    precision) unless the matrix is very ill-conditioned, in which
   55: *>    case a warning is returned. Relevant condition numbers also are
   56: *>    calculated and returned.
   57: *>
   58: *>    DSYSVXX accepts user-provided factorizations and equilibration
   59: *>    factors; see the definitions of the FACT and EQUED options.
   60: *>    Solving with refinement and using a factorization from a previous
   61: *>    DSYSVXX call will also produce a solution with either O(eps)
   62: *>    errors or warnings, but we cannot make that claim for general
   63: *>    user-provided factorizations and equilibration factors if they
   64: *>    differ from what DSYSVXX would itself produce.
   65: *> \endverbatim
   66: *
   67: *> \par Description:
   68: *  =================
   69: *>
   70: *> \verbatim
   71: *>
   72: *>    The following steps are performed:
   73: *>
   74: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   75: *>    the system:
   76: *>
   77: *>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
   78: *>
   79: *>    Whether or not the system will be equilibrated depends on the
   80: *>    scaling of the matrix A, but if equilibration is used, A is
   81: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   82: *>
   83: *>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
   84: *>    the matrix A (after equilibration if FACT = 'E') as
   85: *>
   86: *>       A = U * D * U**T,  if UPLO = 'U', or
   87: *>       A = L * D * L**T,  if UPLO = 'L',
   88: *>
   89: *>    where U (or L) is a product of permutation and unit upper (lower)
   90: *>    triangular matrices, and D is symmetric and block diagonal with
   91: *>    1-by-1 and 2-by-2 diagonal blocks.
   92: *>
   93: *>    3. If some D(i,i)=0, so that D is exactly singular, then the
   94: *>    routine returns with INFO = i. Otherwise, the factored form of A
   95: *>    is used to estimate the condition number of the matrix A (see
   96: *>    argument RCOND).  If the reciprocal of the condition number is
   97: *>    less than machine precision, the routine still goes on to solve
   98: *>    for X and compute error bounds as described below.
   99: *>
  100: *>    4. The system of equations is solved for X using the factored form
  101: *>    of A.
  102: *>
  103: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
  104: *>    the routine will use iterative refinement to try to get a small
  105: *>    error and error bounds.  Refinement calculates the residual to at
  106: *>    least twice the working precision.
  107: *>
  108: *>    6. If equilibration was used, the matrix X is premultiplied by
  109: *>    diag(R) so that it solves the original system before
  110: *>    equilibration.
  111: *> \endverbatim
  112: *
  113: *  Arguments:
  114: *  ==========
  115: *
  116: *> \verbatim
  117: *>     Some optional parameters are bundled in the PARAMS array.  These
  118: *>     settings determine how refinement is performed, but often the
  119: *>     defaults are acceptable.  If the defaults are acceptable, users
  120: *>     can pass NPARAMS = 0 which prevents the source code from accessing
  121: *>     the PARAMS argument.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] FACT
  125: *> \verbatim
  126: *>          FACT is CHARACTER*1
  127: *>     Specifies whether or not the factored form of the matrix A is
  128: *>     supplied on entry, and if not, whether the matrix A should be
  129: *>     equilibrated before it is factored.
  130: *>       = 'F':  On entry, AF and IPIV contain the factored form of A.
  131: *>               If EQUED is not 'N', the matrix A has been
  132: *>               equilibrated with scaling factors given by S.
  133: *>               A, AF, and IPIV are not modified.
  134: *>       = 'N':  The matrix A will be copied to AF and factored.
  135: *>       = 'E':  The matrix A will be equilibrated if necessary, then
  136: *>               copied to AF and factored.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] UPLO
  140: *> \verbatim
  141: *>          UPLO is CHARACTER*1
  142: *>       = 'U':  Upper triangle of A is stored;
  143: *>       = 'L':  Lower triangle of A is stored.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] N
  147: *> \verbatim
  148: *>          N is INTEGER
  149: *>     The number of linear equations, i.e., the order of the
  150: *>     matrix A.  N >= 0.
  151: *> \endverbatim
  152: *>
  153: *> \param[in] NRHS
  154: *> \verbatim
  155: *>          NRHS is INTEGER
  156: *>     The number of right hand sides, i.e., the number of columns
  157: *>     of the matrices B and X.  NRHS >= 0.
  158: *> \endverbatim
  159: *>
  160: *> \param[in,out] A
  161: *> \verbatim
  162: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  163: *>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
  164: *>     upper triangular part of A contains the upper triangular
  165: *>     part of the matrix A, and the strictly lower triangular
  166: *>     part of A is not referenced.  If UPLO = 'L', the leading
  167: *>     N-by-N lower triangular part of A contains the lower
  168: *>     triangular part of the matrix A, and the strictly upper
  169: *>     triangular part of A is not referenced.
  170: *>
  171: *>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  172: *>     diag(S)*A*diag(S).
  173: *> \endverbatim
  174: *>
  175: *> \param[in] LDA
  176: *> \verbatim
  177: *>          LDA is INTEGER
  178: *>     The leading dimension of the array A.  LDA >= max(1,N).
  179: *> \endverbatim
  180: *>
  181: *> \param[in,out] AF
  182: *> \verbatim
  183: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  184: *>     If FACT = 'F', then AF is an input argument and on entry
  185: *>     contains the block diagonal matrix D and the multipliers
  186: *>     used to obtain the factor U or L from the factorization A =
  187: *>     U*D*U**T or A = L*D*L**T as computed by DSYTRF.
  188: *>
  189: *>     If FACT = 'N', then AF is an output argument and on exit
  190: *>     returns the block diagonal matrix D and the multipliers
  191: *>     used to obtain the factor U or L from the factorization A =
  192: *>     U*D*U**T or A = L*D*L**T.
  193: *> \endverbatim
  194: *>
  195: *> \param[in] LDAF
  196: *> \verbatim
  197: *>          LDAF is INTEGER
  198: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  199: *> \endverbatim
  200: *>
  201: *> \param[in,out] IPIV
  202: *> \verbatim
  203: *>          IPIV is INTEGER array, dimension (N)
  204: *>     If FACT = 'F', then IPIV is an input argument and on entry
  205: *>     contains details of the interchanges and the block
  206: *>     structure of D, as determined by DSYTRF.  If IPIV(k) > 0,
  207: *>     then rows and columns k and IPIV(k) were interchanged and
  208: *>     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
  209: *>     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
  210: *>     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
  211: *>     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
  212: *>     then rows and columns k+1 and -IPIV(k) were interchanged
  213: *>     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  214: *>
  215: *>     If FACT = 'N', then IPIV is an output argument and on exit
  216: *>     contains details of the interchanges and the block
  217: *>     structure of D, as determined by DSYTRF.
  218: *> \endverbatim
  219: *>
  220: *> \param[in,out] EQUED
  221: *> \verbatim
  222: *>          EQUED is CHARACTER*1
  223: *>     Specifies the form of equilibration that was done.
  224: *>       = 'N':  No equilibration (always true if FACT = 'N').
  225: *>       = 'Y':  Both row and column equilibration, i.e., A has been
  226: *>               replaced by diag(S) * A * diag(S).
  227: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
  228: *>     output argument.
  229: *> \endverbatim
  230: *>
  231: *> \param[in,out] S
  232: *> \verbatim
  233: *>          S is DOUBLE PRECISION array, dimension (N)
  234: *>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
  235: *>     the left and right by diag(S).  S is an input argument if FACT =
  236: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  237: *>     = 'Y', each element of S must be positive.  If S is output, each
  238: *>     element of S is a power of the radix. If S is input, each element
  239: *>     of S should be a power of the radix to ensure a reliable solution
  240: *>     and error estimates. Scaling by powers of the radix does not cause
  241: *>     rounding errors unless the result underflows or overflows.
  242: *>     Rounding errors during scaling lead to refining with a matrix that
  243: *>     is not equivalent to the input matrix, producing error estimates
  244: *>     that may not be reliable.
  245: *> \endverbatim
  246: *>
  247: *> \param[in,out] B
  248: *> \verbatim
  249: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  250: *>     On entry, the N-by-NRHS right hand side matrix B.
  251: *>     On exit,
  252: *>     if EQUED = 'N', B is not modified;
  253: *>     if EQUED = 'Y', B is overwritten by diag(S)*B;
  254: *> \endverbatim
  255: *>
  256: *> \param[in] LDB
  257: *> \verbatim
  258: *>          LDB is INTEGER
  259: *>     The leading dimension of the array B.  LDB >= max(1,N).
  260: *> \endverbatim
  261: *>
  262: *> \param[out] X
  263: *> \verbatim
  264: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  265: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
  266: *>     system of equations.  Note that A and B are modified on exit if
  267: *>     EQUED .ne. 'N', and the solution to the equilibrated system is
  268: *>     inv(diag(S))*X.
  269: *> \endverbatim
  270: *>
  271: *> \param[in] LDX
  272: *> \verbatim
  273: *>          LDX is INTEGER
  274: *>     The leading dimension of the array X.  LDX >= max(1,N).
  275: *> \endverbatim
  276: *>
  277: *> \param[out] RCOND
  278: *> \verbatim
  279: *>          RCOND is DOUBLE PRECISION
  280: *>     Reciprocal scaled condition number.  This is an estimate of the
  281: *>     reciprocal Skeel condition number of the matrix A after
  282: *>     equilibration (if done).  If this is less than the machine
  283: *>     precision (in particular, if it is zero), the matrix is singular
  284: *>     to working precision.  Note that the error may still be small even
  285: *>     if this number is very small and the matrix appears ill-
  286: *>     conditioned.
  287: *> \endverbatim
  288: *>
  289: *> \param[out] RPVGRW
  290: *> \verbatim
  291: *>          RPVGRW is DOUBLE PRECISION
  292: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
  293: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
  294: *>     norm is used.  If this is much less than 1, then the stability of
  295: *>     the LU factorization of the (equilibrated) matrix A could be poor.
  296: *>     This also means that the solution X, estimated condition numbers,
  297: *>     and error bounds could be unreliable. If factorization fails with
  298: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
  299: *>     for the leading INFO columns of A.
  300: *> \endverbatim
  301: *>
  302: *> \param[out] BERR
  303: *> \verbatim
  304: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  305: *>     Componentwise relative backward error.  This is the
  306: *>     componentwise relative backward error of each solution vector X(j)
  307: *>     (i.e., the smallest relative change in any element of A or B that
  308: *>     makes X(j) an exact solution).
  309: *> \endverbatim
  310: *>
  311: *> \param[in] N_ERR_BNDS
  312: *> \verbatim
  313: *>          N_ERR_BNDS is INTEGER
  314: *>     Number of error bounds to return for each right hand side
  315: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  316: *>     ERR_BNDS_COMP below.
  317: *> \endverbatim
  318: *>
  319: *> \param[out] ERR_BNDS_NORM
  320: *> \verbatim
  321: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  322: *>     For each right-hand side, this array contains information about
  323: *>     various error bounds and condition numbers corresponding to the
  324: *>     normwise relative error, which is defined as follows:
  325: *>
  326: *>     Normwise relative error in the ith solution vector:
  327: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  328: *>            ------------------------------
  329: *>                  max_j abs(X(j,i))
  330: *>
  331: *>     The array is indexed by the type of error information as described
  332: *>     below. There currently are up to three pieces of information
  333: *>     returned.
  334: *>
  335: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  336: *>     right-hand side.
  337: *>
  338: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  339: *>     three fields:
  340: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  341: *>              reciprocal condition number is less than the threshold
  342: *>              sqrt(n) * dlamch('Epsilon').
  343: *>
  344: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  345: *>              almost certainly within a factor of 10 of the true error
  346: *>              so long as the next entry is greater than the threshold
  347: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  348: *>              be trusted if the previous boolean is true.
  349: *>
  350: *>     err = 3  Reciprocal condition number: Estimated normwise
  351: *>              reciprocal condition number.  Compared with the threshold
  352: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  353: *>              estimate is "guaranteed". These reciprocal condition
  354: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  355: *>              appropriately scaled matrix Z.
  356: *>              Let Z = S*A, where S scales each row by a power of the
  357: *>              radix so all absolute row sums of Z are approximately 1.
  358: *>
  359: *>     See Lapack Working Note 165 for further details and extra
  360: *>     cautions.
  361: *> \endverbatim
  362: *>
  363: *> \param[out] ERR_BNDS_COMP
  364: *> \verbatim
  365: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  366: *>     For each right-hand side, this array contains information about
  367: *>     various error bounds and condition numbers corresponding to the
  368: *>     componentwise relative error, which is defined as follows:
  369: *>
  370: *>     Componentwise relative error in the ith solution vector:
  371: *>                    abs(XTRUE(j,i) - X(j,i))
  372: *>             max_j ----------------------
  373: *>                         abs(X(j,i))
  374: *>
  375: *>     The array is indexed by the right-hand side i (on which the
  376: *>     componentwise relative error depends), and the type of error
  377: *>     information as described below. There currently are up to three
  378: *>     pieces of information returned for each right-hand side. If
  379: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  380: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  381: *>     the first (:,N_ERR_BNDS) entries are returned.
  382: *>
  383: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  384: *>     right-hand side.
  385: *>
  386: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  387: *>     three fields:
  388: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  389: *>              reciprocal condition number is less than the threshold
  390: *>              sqrt(n) * dlamch('Epsilon').
  391: *>
  392: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  393: *>              almost certainly within a factor of 10 of the true error
  394: *>              so long as the next entry is greater than the threshold
  395: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  396: *>              be trusted if the previous boolean is true.
  397: *>
  398: *>     err = 3  Reciprocal condition number: Estimated componentwise
  399: *>              reciprocal condition number.  Compared with the threshold
  400: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  401: *>              estimate is "guaranteed". These reciprocal condition
  402: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  403: *>              appropriately scaled matrix Z.
  404: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  405: *>              current right-hand side and S scales each row of
  406: *>              A*diag(x) by a power of the radix so all absolute row
  407: *>              sums of Z are approximately 1.
  408: *>
  409: *>     See Lapack Working Note 165 for further details and extra
  410: *>     cautions.
  411: *> \endverbatim
  412: *>
  413: *> \param[in] NPARAMS
  414: *> \verbatim
  415: *>          NPARAMS is INTEGER
  416: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  417: *>     PARAMS array is never referenced and default values are used.
  418: *> \endverbatim
  419: *>
  420: *> \param[in,out] PARAMS
  421: *> \verbatim
  422: *>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
  423: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  424: *>     that entry will be filled with default value used for that
  425: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  426: *>     are used for higher-numbered parameters.
  427: *>
  428: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  429: *>            refinement or not.
  430: *>         Default: 1.0D+0
  431: *>            = 0.0:  No refinement is performed, and no error bounds are
  432: *>                    computed.
  433: *>            = 1.0:  Use the extra-precise refinement algorithm.
  434: *>              (other values are reserved for future use)
  435: *>
  436: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  437: *>            computations allowed for refinement.
  438: *>         Default: 10
  439: *>         Aggressive: Set to 100 to permit convergence using approximate
  440: *>                     factorizations or factorizations other than LU. If
  441: *>                     the factorization uses a technique other than
  442: *>                     Gaussian elimination, the guarantees in
  443: *>                     err_bnds_norm and err_bnds_comp may no longer be
  444: *>                     trustworthy.
  445: *>
  446: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  447: *>            will attempt to find a solution with small componentwise
  448: *>            relative error in the double-precision algorithm.  Positive
  449: *>            is true, 0.0 is false.
  450: *>         Default: 1.0 (attempt componentwise convergence)
  451: *> \endverbatim
  452: *>
  453: *> \param[out] WORK
  454: *> \verbatim
  455: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  456: *> \endverbatim
  457: *>
  458: *> \param[out] IWORK
  459: *> \verbatim
  460: *>          IWORK is INTEGER array, dimension (N)
  461: *> \endverbatim
  462: *>
  463: *> \param[out] INFO
  464: *> \verbatim
  465: *>          INFO is INTEGER
  466: *>       = 0:  Successful exit. The solution to every right-hand side is
  467: *>         guaranteed.
  468: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  469: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  470: *>         has been completed, but the factor U is exactly singular, so
  471: *>         the solution and error bounds could not be computed. RCOND = 0
  472: *>         is returned.
  473: *>       = N+J: The solution corresponding to the Jth right-hand side is
  474: *>         not guaranteed. The solutions corresponding to other right-
  475: *>         hand sides K with K > J may not be guaranteed as well, but
  476: *>         only the first such right-hand side is reported. If a small
  477: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  478: *>         the Jth right-hand side is the first with a normwise error
  479: *>         bound that is not guaranteed (the smallest J such
  480: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  481: *>         the Jth right-hand side is the first with either a normwise or
  482: *>         componentwise error bound that is not guaranteed (the smallest
  483: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  484: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  485: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  486: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  487: *>         ERR_BNDS_COMP.
  488: *> \endverbatim
  489: *
  490: *  Authors:
  491: *  ========
  492: *
  493: *> \author Univ. of Tennessee
  494: *> \author Univ. of California Berkeley
  495: *> \author Univ. of Colorado Denver
  496: *> \author NAG Ltd.
  497: *
  498: *> \ingroup doubleSYsolve
  499: *
  500: *  =====================================================================
  501:       SUBROUTINE DSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
  502:      $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
  503:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  504:      $                    NPARAMS, PARAMS, WORK, IWORK, INFO )
  505: *
  506: *  -- LAPACK driver routine --
  507: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  508: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  509: *
  510: *     .. Scalar Arguments ..
  511:       CHARACTER          EQUED, FACT, UPLO
  512:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  513:      $                   N_ERR_BNDS
  514:       DOUBLE PRECISION   RCOND, RPVGRW
  515: *     ..
  516: *     .. Array Arguments ..
  517:       INTEGER            IPIV( * ), IWORK( * )
  518:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  519:      $                   X( LDX, * ), WORK( * )
  520:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
  521:      $                   ERR_BNDS_NORM( NRHS, * ),
  522:      $                   ERR_BNDS_COMP( NRHS, * )
  523: *     ..
  524: *
  525: *  ==================================================================
  526: *
  527: *     .. Parameters ..
  528:       DOUBLE PRECISION   ZERO, ONE
  529:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  530:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  531:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  532:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  533:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  534:      $                   BERR_I = 3 )
  535:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  536:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  537:      $                   PIV_GROWTH_I = 9 )
  538: *     ..
  539: *     .. Local Scalars ..
  540:       LOGICAL            EQUIL, NOFACT, RCEQU
  541:       INTEGER            INFEQU, J
  542:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
  543: *     ..
  544: *     .. External Functions ..
  545:       EXTERNAL           LSAME, DLAMCH, DLA_SYRPVGRW
  546:       LOGICAL            LSAME
  547:       DOUBLE PRECISION   DLAMCH, DLA_SYRPVGRW
  548: *     ..
  549: *     .. External Subroutines ..
  550:       EXTERNAL           DSYEQUB, DSYTRF, DSYTRS,
  551:      $                   DLACPY, DLAQSY, XERBLA, DLASCL2, DSYRFSX
  552: *     ..
  553: *     .. Intrinsic Functions ..
  554:       INTRINSIC          MAX, MIN
  555: *     ..
  556: *     .. Executable Statements ..
  557: *
  558:       INFO = 0
  559:       NOFACT = LSAME( FACT, 'N' )
  560:       EQUIL = LSAME( FACT, 'E' )
  561:       SMLNUM = DLAMCH( 'Safe minimum' )
  562:       BIGNUM = ONE / SMLNUM
  563:       IF( NOFACT .OR. EQUIL ) THEN
  564:          EQUED = 'N'
  565:          RCEQU = .FALSE.
  566:       ELSE
  567:          RCEQU = LSAME( EQUED, 'Y' )
  568:       ENDIF
  569: *
  570: *     Default is failure.  If an input parameter is wrong or
  571: *     factorization fails, make everything look horrible.  Only the
  572: *     pivot growth is set here, the rest is initialized in DSYRFSX.
  573: *
  574:       RPVGRW = ZERO
  575: *
  576: *     Test the input parameters.  PARAMS is not tested until DSYRFSX.
  577: *
  578:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
  579:      $     LSAME( FACT, 'F' ) ) THEN
  580:          INFO = -1
  581:       ELSE IF( .NOT.LSAME(UPLO, 'U') .AND.
  582:      $         .NOT.LSAME(UPLO, 'L') ) THEN
  583:          INFO = -2
  584:       ELSE IF( N.LT.0 ) THEN
  585:          INFO = -3
  586:       ELSE IF( NRHS.LT.0 ) THEN
  587:          INFO = -4
  588:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  589:          INFO = -6
  590:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  591:          INFO = -8
  592:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  593:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  594:          INFO = -10
  595:       ELSE
  596:          IF ( RCEQU ) THEN
  597:             SMIN = BIGNUM
  598:             SMAX = ZERO
  599:             DO 10 J = 1, N
  600:                SMIN = MIN( SMIN, S( J ) )
  601:                SMAX = MAX( SMAX, S( J ) )
  602:  10         CONTINUE
  603:             IF( SMIN.LE.ZERO ) THEN
  604:                INFO = -11
  605:             ELSE IF( N.GT.0 ) THEN
  606:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  607:             ELSE
  608:                SCOND = ONE
  609:             END IF
  610:          END IF
  611:          IF( INFO.EQ.0 ) THEN
  612:             IF( LDB.LT.MAX( 1, N ) ) THEN
  613:                INFO = -13
  614:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  615:                INFO = -15
  616:             END IF
  617:          END IF
  618:       END IF
  619: *
  620:       IF( INFO.NE.0 ) THEN
  621:          CALL XERBLA( 'DSYSVXX', -INFO )
  622:          RETURN
  623:       END IF
  624: *
  625:       IF( EQUIL ) THEN
  626: *
  627: *     Compute row and column scalings to equilibrate the matrix A.
  628: *
  629:          CALL DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
  630:          IF( INFEQU.EQ.0 ) THEN
  631: *
  632: *     Equilibrate the matrix.
  633: *
  634:             CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  635:             RCEQU = LSAME( EQUED, 'Y' )
  636:          END IF
  637:       END IF
  638: *
  639: *     Scale the right-hand side.
  640: *
  641:       IF( RCEQU ) CALL DLASCL2( N, NRHS, S, B, LDB )
  642: *
  643:       IF( NOFACT .OR. EQUIL ) THEN
  644: *
  645: *        Compute the LDL^T or UDU^T factorization of A.
  646: *
  647:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  648:          CALL DSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
  649: *
  650: *        Return if INFO is non-zero.
  651: *
  652:          IF( INFO.GT.0 ) THEN
  653: *
  654: *           Pivot in column INFO is exactly 0
  655: *           Compute the reciprocal pivot growth factor of the
  656: *           leading rank-deficient INFO columns of A.
  657: *
  658:             IF ( N.GT.0 )
  659:      $           RPVGRW = DLA_SYRPVGRW(UPLO, N, INFO, A, LDA, AF,
  660:      $           LDAF, IPIV, WORK )
  661:             RETURN
  662:          END IF
  663:       END IF
  664: *
  665: *     Compute the reciprocal pivot growth factor RPVGRW.
  666: *
  667:       IF ( N.GT.0 )
  668:      $     RPVGRW = DLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
  669:      $     IPIV, WORK )
  670: *
  671: *     Compute the solution matrix X.
  672: *
  673:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  674:       CALL DSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  675: *
  676: *     Use iterative refinement to improve the computed solution and
  677: *     compute error bounds and backward error estimates for it.
  678: *
  679:       CALL DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
  680:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
  681:      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
  682: *
  683: *     Scale solutions.
  684: *
  685:       IF ( RCEQU ) THEN
  686:          CALL DLASCL2 ( N, NRHS, S, X, LDX )
  687:       END IF
  688: *
  689:       RETURN
  690: *
  691: *     End of DSYSVXX
  692: *
  693:       END

CVSweb interface <joel.bertrand@systella.fr>