File:  [local] / rpl / lapack / lapack / dsysvx.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:27 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
    2:      $                   LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
    3:      $                   IWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          FACT, UPLO
   12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * ), IWORK( * )
   17:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   18:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DSYSVX uses the diagonal pivoting factorization to compute the
   25: *  solution to a real system of linear equations A * X = B,
   26: *  where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
   27: *  matrices.
   28: *
   29: *  Error bounds on the solution and a condition estimate are also
   30: *  provided.
   31: *
   32: *  Description
   33: *  ===========
   34: *
   35: *  The following steps are performed:
   36: *
   37: *  1. If FACT = 'N', the diagonal pivoting method is used to factor A.
   38: *     The form of the factorization is
   39: *        A = U * D * U**T,  if UPLO = 'U', or
   40: *        A = L * D * L**T,  if UPLO = 'L',
   41: *     where U (or L) is a product of permutation and unit upper (lower)
   42: *     triangular matrices, and D is symmetric and block diagonal with
   43: *     1-by-1 and 2-by-2 diagonal blocks.
   44: *
   45: *  2. If some D(i,i)=0, so that D is exactly singular, then the routine
   46: *     returns with INFO = i. Otherwise, the factored form of A is used
   47: *     to estimate the condition number of the matrix A.  If the
   48: *     reciprocal of the condition number is less than machine precision,
   49: *     INFO = N+1 is returned as a warning, but the routine still goes on
   50: *     to solve for X and compute error bounds as described below.
   51: *
   52: *  3. The system of equations is solved for X using the factored form
   53: *     of A.
   54: *
   55: *  4. Iterative refinement is applied to improve the computed solution
   56: *     matrix and calculate error bounds and backward error estimates
   57: *     for it.
   58: *
   59: *  Arguments
   60: *  =========
   61: *
   62: *  FACT    (input) CHARACTER*1
   63: *          Specifies whether or not the factored form of A has been
   64: *          supplied on entry.
   65: *          = 'F':  On entry, AF and IPIV contain the factored form of
   66: *                  A.  AF and IPIV will not be modified.
   67: *          = 'N':  The matrix A will be copied to AF and factored.
   68: *
   69: *  UPLO    (input) CHARACTER*1
   70: *          = 'U':  Upper triangle of A is stored;
   71: *          = 'L':  Lower triangle of A is stored.
   72: *
   73: *  N       (input) INTEGER
   74: *          The number of linear equations, i.e., the order of the
   75: *          matrix A.  N >= 0.
   76: *
   77: *  NRHS    (input) INTEGER
   78: *          The number of right hand sides, i.e., the number of columns
   79: *          of the matrices B and X.  NRHS >= 0.
   80: *
   81: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   82: *          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
   83: *          upper triangular part of A contains the upper triangular part
   84: *          of the matrix A, and the strictly lower triangular part of A
   85: *          is not referenced.  If UPLO = 'L', the leading N-by-N lower
   86: *          triangular part of A contains the lower triangular part of
   87: *          the matrix A, and the strictly upper triangular part of A is
   88: *          not referenced.
   89: *
   90: *  LDA     (input) INTEGER
   91: *          The leading dimension of the array A.  LDA >= max(1,N).
   92: *
   93: *  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
   94: *          If FACT = 'F', then AF is an input argument and on entry
   95: *          contains the block diagonal matrix D and the multipliers used
   96: *          to obtain the factor U or L from the factorization
   97: *          A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
   98: *
   99: *          If FACT = 'N', then AF is an output argument and on exit
  100: *          returns the block diagonal matrix D and the multipliers used
  101: *          to obtain the factor U or L from the factorization
  102: *          A = U*D*U**T or A = L*D*L**T.
  103: *
  104: *  LDAF    (input) INTEGER
  105: *          The leading dimension of the array AF.  LDAF >= max(1,N).
  106: *
  107: *  IPIV    (input or output) INTEGER array, dimension (N)
  108: *          If FACT = 'F', then IPIV is an input argument and on entry
  109: *          contains details of the interchanges and the block structure
  110: *          of D, as determined by DSYTRF.
  111: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  112: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
  113: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  114: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  115: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
  116: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  117: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  118: *
  119: *          If FACT = 'N', then IPIV is an output argument and on exit
  120: *          contains details of the interchanges and the block structure
  121: *          of D, as determined by DSYTRF.
  122: *
  123: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
  124: *          The N-by-NRHS right hand side matrix B.
  125: *
  126: *  LDB     (input) INTEGER
  127: *          The leading dimension of the array B.  LDB >= max(1,N).
  128: *
  129: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  130: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
  131: *
  132: *  LDX     (input) INTEGER
  133: *          The leading dimension of the array X.  LDX >= max(1,N).
  134: *
  135: *  RCOND   (output) DOUBLE PRECISION
  136: *          The estimate of the reciprocal condition number of the matrix
  137: *          A.  If RCOND is less than the machine precision (in
  138: *          particular, if RCOND = 0), the matrix is singular to working
  139: *          precision.  This condition is indicated by a return code of
  140: *          INFO > 0.
  141: *
  142: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  143: *          The estimated forward error bound for each solution vector
  144: *          X(j) (the j-th column of the solution matrix X).
  145: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  146: *          is an estimated upper bound for the magnitude of the largest
  147: *          element in (X(j) - XTRUE) divided by the magnitude of the
  148: *          largest element in X(j).  The estimate is as reliable as
  149: *          the estimate for RCOND, and is almost always a slight
  150: *          overestimate of the true error.
  151: *
  152: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  153: *          The componentwise relative backward error of each solution
  154: *          vector X(j) (i.e., the smallest relative change in
  155: *          any element of A or B that makes X(j) an exact solution).
  156: *
  157: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  158: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  159: *
  160: *  LWORK   (input) INTEGER
  161: *          The length of WORK.  LWORK >= max(1,3*N), and for best
  162: *          performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
  163: *          NB is the optimal blocksize for DSYTRF.
  164: *
  165: *          If LWORK = -1, then a workspace query is assumed; the routine
  166: *          only calculates the optimal size of the WORK array, returns
  167: *          this value as the first entry of the WORK array, and no error
  168: *          message related to LWORK is issued by XERBLA.
  169: *
  170: *  IWORK   (workspace) INTEGER array, dimension (N)
  171: *
  172: *  INFO    (output) INTEGER
  173: *          = 0: successful exit
  174: *          < 0: if INFO = -i, the i-th argument had an illegal value
  175: *          > 0: if INFO = i, and i is
  176: *                <= N:  D(i,i) is exactly zero.  The factorization
  177: *                       has been completed but the factor D is exactly
  178: *                       singular, so the solution and error bounds could
  179: *                       not be computed. RCOND = 0 is returned.
  180: *                = N+1: D is nonsingular, but RCOND is less than machine
  181: *                       precision, meaning that the matrix is singular
  182: *                       to working precision.  Nevertheless, the
  183: *                       solution and error bounds are computed because
  184: *                       there are a number of situations where the
  185: *                       computed solution can be more accurate than the
  186: *                       value of RCOND would suggest.
  187: *
  188: *  =====================================================================
  189: *
  190: *     .. Parameters ..
  191:       DOUBLE PRECISION   ZERO
  192:       PARAMETER          ( ZERO = 0.0D+0 )
  193: *     ..
  194: *     .. Local Scalars ..
  195:       LOGICAL            LQUERY, NOFACT
  196:       INTEGER            LWKOPT, NB
  197:       DOUBLE PRECISION   ANORM
  198: *     ..
  199: *     .. External Functions ..
  200:       LOGICAL            LSAME
  201:       INTEGER            ILAENV
  202:       DOUBLE PRECISION   DLAMCH, DLANSY
  203:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
  204: *     ..
  205: *     .. External Subroutines ..
  206:       EXTERNAL           DLACPY, DSYCON, DSYRFS, DSYTRF, DSYTRS, XERBLA
  207: *     ..
  208: *     .. Intrinsic Functions ..
  209:       INTRINSIC          MAX
  210: *     ..
  211: *     .. Executable Statements ..
  212: *
  213: *     Test the input parameters.
  214: *
  215:       INFO = 0
  216:       NOFACT = LSAME( FACT, 'N' )
  217:       LQUERY = ( LWORK.EQ.-1 )
  218:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
  219:          INFO = -1
  220:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  221:      $          THEN
  222:          INFO = -2
  223:       ELSE IF( N.LT.0 ) THEN
  224:          INFO = -3
  225:       ELSE IF( NRHS.LT.0 ) THEN
  226:          INFO = -4
  227:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  228:          INFO = -6
  229:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  230:          INFO = -8
  231:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  232:          INFO = -11
  233:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  234:          INFO = -13
  235:       ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN
  236:          INFO = -18
  237:       END IF
  238: *
  239:       IF( INFO.EQ.0 ) THEN
  240:          LWKOPT = MAX( 1, 3*N )
  241:          IF( NOFACT ) THEN
  242:             NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
  243:             LWKOPT = MAX( LWKOPT, N*NB )
  244:          END IF
  245:          WORK( 1 ) = LWKOPT
  246:       END IF
  247: *
  248:       IF( INFO.NE.0 ) THEN
  249:          CALL XERBLA( 'DSYSVX', -INFO )
  250:          RETURN
  251:       ELSE IF( LQUERY ) THEN
  252:          RETURN
  253:       END IF
  254: *
  255:       IF( NOFACT ) THEN
  256: *
  257: *        Compute the factorization A = U*D*U' or A = L*D*L'.
  258: *
  259:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  260:          CALL DSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, LWORK, INFO )
  261: *
  262: *        Return if INFO is non-zero.
  263: *
  264:          IF( INFO.GT.0 )THEN
  265:             RCOND = ZERO
  266:             RETURN
  267:          END IF
  268:       END IF
  269: *
  270: *     Compute the norm of the matrix A.
  271: *
  272:       ANORM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
  273: *
  274: *     Compute the reciprocal of the condition number of A.
  275: *
  276:       CALL DSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK, IWORK,
  277:      $             INFO )
  278: *
  279: *     Compute the solution vectors X.
  280: *
  281:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  282:       CALL DSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  283: *
  284: *     Use iterative refinement to improve the computed solutions and
  285: *     compute error bounds and backward error estimates for them.
  286: *
  287:       CALL DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
  288:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
  289: *
  290: *     Set INFO = N+1 if the matrix is singular to working precision.
  291: *
  292:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  293:      $   INFO = N + 1
  294: *
  295:       WORK( 1 ) = LWKOPT
  296: *
  297:       RETURN
  298: *
  299: *     End of DSYSVX
  300: *
  301:       END

CVSweb interface <joel.bertrand@systella.fr>