File:  [local] / rpl / lapack / lapack / dsyrfsx.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:41 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b DSYRFSX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSYRFSX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyrfsx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyrfsx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyrfsx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
   22: *                           S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
   23: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
   24: *                           WORK, IWORK, INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       CHARACTER          UPLO, EQUED
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       INTEGER            IPIV( * ), IWORK( * )
   34: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   35: *      $                   X( LDX, * ), WORK( * )
   36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
   37: *      $                   ERR_BNDS_NORM( NRHS, * ),
   38: *      $                   ERR_BNDS_COMP( NRHS, * )
   39: *       ..
   40: *  
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *>    DSYRFSX improves the computed solution to a system of linear
   48: *>    equations when the coefficient matrix is symmetric indefinite, and
   49: *>    provides error bounds and backward error estimates for the
   50: *>    solution.  In addition to normwise error bound, the code provides
   51: *>    maximum componentwise error bound if possible.  See comments for
   52: *>    ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
   53: *>
   54: *>    The original system of linear equations may have been equilibrated
   55: *>    before calling this routine, as described by arguments EQUED and S
   56: *>    below. In this case, the solution and error bounds returned are
   57: *>    for the original unequilibrated system.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \verbatim
   64: *>     Some optional parameters are bundled in the PARAMS array.  These
   65: *>     settings determine how refinement is performed, but often the
   66: *>     defaults are acceptable.  If the defaults are acceptable, users
   67: *>     can pass NPARAMS = 0 which prevents the source code from accessing
   68: *>     the PARAMS argument.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] UPLO
   72: *> \verbatim
   73: *>          UPLO is CHARACTER*1
   74: *>       = 'U':  Upper triangle of A is stored;
   75: *>       = 'L':  Lower triangle of A is stored.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] EQUED
   79: *> \verbatim
   80: *>          EQUED is CHARACTER*1
   81: *>     Specifies the form of equilibration that was done to A
   82: *>     before calling this routine. This is needed to compute
   83: *>     the solution and error bounds correctly.
   84: *>       = 'N':  No equilibration
   85: *>       = 'Y':  Both row and column equilibration, i.e., A has been
   86: *>               replaced by diag(S) * A * diag(S).
   87: *>               The right hand side B has been changed accordingly.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>     The order of the matrix A.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] NRHS
   97: *> \verbatim
   98: *>          NRHS is INTEGER
   99: *>     The number of right hand sides, i.e., the number of columns
  100: *>     of the matrices B and X.  NRHS >= 0.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] A
  104: *> \verbatim
  105: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  106: *>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
  107: *>     upper triangular part of A contains the upper triangular
  108: *>     part of the matrix A, and the strictly lower triangular
  109: *>     part of A is not referenced.  If UPLO = 'L', the leading
  110: *>     N-by-N lower triangular part of A contains the lower
  111: *>     triangular part of the matrix A, and the strictly upper
  112: *>     triangular part of A is not referenced.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDA
  116: *> \verbatim
  117: *>          LDA is INTEGER
  118: *>     The leading dimension of the array A.  LDA >= max(1,N).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] AF
  122: *> \verbatim
  123: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  124: *>     The factored form of the matrix A.  AF contains the block
  125: *>     diagonal matrix D and the multipliers used to obtain the
  126: *>     factor U or L from the factorization A = U*D*U**T or A =
  127: *>     L*D*L**T as computed by DSYTRF.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] LDAF
  131: *> \verbatim
  132: *>          LDAF is INTEGER
  133: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IPIV
  137: *> \verbatim
  138: *>          IPIV is INTEGER array, dimension (N)
  139: *>     Details of the interchanges and the block structure of D
  140: *>     as determined by DSYTRF.
  141: *> \endverbatim
  142: *>
  143: *> \param[in,out] S
  144: *> \verbatim
  145: *>          S is or output) DOUBLE PRECISION array, dimension (N)
  146: *>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
  147: *>     the left and right by diag(S).  S is an input argument if FACT =
  148: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  149: *>     = 'Y', each element of S must be positive.  If S is output, each
  150: *>     element of S is a power of the radix. If S is input, each element
  151: *>     of S should be a power of the radix to ensure a reliable solution
  152: *>     and error estimates. Scaling by powers of the radix does not cause
  153: *>     rounding errors unless the result underflows or overflows.
  154: *>     Rounding errors during scaling lead to refining with a matrix that
  155: *>     is not equivalent to the input matrix, producing error estimates
  156: *>     that may not be reliable.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] B
  160: *> \verbatim
  161: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  162: *>     The right hand side matrix B.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] LDB
  166: *> \verbatim
  167: *>          LDB is INTEGER
  168: *>     The leading dimension of the array B.  LDB >= max(1,N).
  169: *> \endverbatim
  170: *>
  171: *> \param[in,out] X
  172: *> \verbatim
  173: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  174: *>     On entry, the solution matrix X, as computed by DGETRS.
  175: *>     On exit, the improved solution matrix X.
  176: *> \endverbatim
  177: *>
  178: *> \param[in] LDX
  179: *> \verbatim
  180: *>          LDX is INTEGER
  181: *>     The leading dimension of the array X.  LDX >= max(1,N).
  182: *> \endverbatim
  183: *>
  184: *> \param[out] RCOND
  185: *> \verbatim
  186: *>          RCOND is DOUBLE PRECISION
  187: *>     Reciprocal scaled condition number.  This is an estimate of the
  188: *>     reciprocal Skeel condition number of the matrix A after
  189: *>     equilibration (if done).  If this is less than the machine
  190: *>     precision (in particular, if it is zero), the matrix is singular
  191: *>     to working precision.  Note that the error may still be small even
  192: *>     if this number is very small and the matrix appears ill-
  193: *>     conditioned.
  194: *> \endverbatim
  195: *>
  196: *> \param[out] BERR
  197: *> \verbatim
  198: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  199: *>     Componentwise relative backward error.  This is the
  200: *>     componentwise relative backward error of each solution vector X(j)
  201: *>     (i.e., the smallest relative change in any element of A or B that
  202: *>     makes X(j) an exact solution).
  203: *> \endverbatim
  204: *>
  205: *> \param[in] N_ERR_BNDS
  206: *> \verbatim
  207: *>          N_ERR_BNDS is INTEGER
  208: *>     Number of error bounds to return for each right hand side
  209: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  210: *>     ERR_BNDS_COMP below.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] ERR_BNDS_NORM
  214: *> \verbatim
  215: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  216: *>     For each right-hand side, this array contains information about
  217: *>     various error bounds and condition numbers corresponding to the
  218: *>     normwise relative error, which is defined as follows:
  219: *>
  220: *>     Normwise relative error in the ith solution vector:
  221: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  222: *>            ------------------------------
  223: *>                  max_j abs(X(j,i))
  224: *>
  225: *>     The array is indexed by the type of error information as described
  226: *>     below. There currently are up to three pieces of information
  227: *>     returned.
  228: *>
  229: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  230: *>     right-hand side.
  231: *>
  232: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  233: *>     three fields:
  234: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  235: *>              reciprocal condition number is less than the threshold
  236: *>              sqrt(n) * dlamch('Epsilon').
  237: *>
  238: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  239: *>              almost certainly within a factor of 10 of the true error
  240: *>              so long as the next entry is greater than the threshold
  241: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  242: *>              be trusted if the previous boolean is true.
  243: *>
  244: *>     err = 3  Reciprocal condition number: Estimated normwise
  245: *>              reciprocal condition number.  Compared with the threshold
  246: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  247: *>              estimate is "guaranteed". These reciprocal condition
  248: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  249: *>              appropriately scaled matrix Z.
  250: *>              Let Z = S*A, where S scales each row by a power of the
  251: *>              radix so all absolute row sums of Z are approximately 1.
  252: *>
  253: *>     See Lapack Working Note 165 for further details and extra
  254: *>     cautions.
  255: *> \endverbatim
  256: *>
  257: *> \param[out] ERR_BNDS_COMP
  258: *> \verbatim
  259: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  260: *>     For each right-hand side, this array contains information about
  261: *>     various error bounds and condition numbers corresponding to the
  262: *>     componentwise relative error, which is defined as follows:
  263: *>
  264: *>     Componentwise relative error in the ith solution vector:
  265: *>                    abs(XTRUE(j,i) - X(j,i))
  266: *>             max_j ----------------------
  267: *>                         abs(X(j,i))
  268: *>
  269: *>     The array is indexed by the right-hand side i (on which the
  270: *>     componentwise relative error depends), and the type of error
  271: *>     information as described below. There currently are up to three
  272: *>     pieces of information returned for each right-hand side. If
  273: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  274: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  275: *>     the first (:,N_ERR_BNDS) entries are returned.
  276: *>
  277: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  278: *>     right-hand side.
  279: *>
  280: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  281: *>     three fields:
  282: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  283: *>              reciprocal condition number is less than the threshold
  284: *>              sqrt(n) * dlamch('Epsilon').
  285: *>
  286: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  287: *>              almost certainly within a factor of 10 of the true error
  288: *>              so long as the next entry is greater than the threshold
  289: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  290: *>              be trusted if the previous boolean is true.
  291: *>
  292: *>     err = 3  Reciprocal condition number: Estimated componentwise
  293: *>              reciprocal condition number.  Compared with the threshold
  294: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  295: *>              estimate is "guaranteed". These reciprocal condition
  296: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  297: *>              appropriately scaled matrix Z.
  298: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  299: *>              current right-hand side and S scales each row of
  300: *>              A*diag(x) by a power of the radix so all absolute row
  301: *>              sums of Z are approximately 1.
  302: *>
  303: *>     See Lapack Working Note 165 for further details and extra
  304: *>     cautions.
  305: *> \endverbatim
  306: *>
  307: *> \param[in] NPARAMS
  308: *> \verbatim
  309: *>          NPARAMS is INTEGER
  310: *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
  311: *>     PARAMS array is never referenced and default values are used.
  312: *> \endverbatim
  313: *>
  314: *> \param[in,out] PARAMS
  315: *> \verbatim
  316: *>          PARAMS is / output) DOUBLE PRECISION array, dimension (NPARAMS)
  317: *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
  318: *>     that entry will be filled with default value used for that
  319: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  320: *>     are used for higher-numbered parameters.
  321: *>
  322: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  323: *>            refinement or not.
  324: *>         Default: 1.0D+0
  325: *>            = 0.0 : No refinement is performed, and no error bounds are
  326: *>                    computed.
  327: *>            = 1.0 : Use the double-precision refinement algorithm,
  328: *>                    possibly with doubled-single computations if the
  329: *>                    compilation environment does not support DOUBLE
  330: *>                    PRECISION.
  331: *>              (other values are reserved for future use)
  332: *>
  333: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  334: *>            computations allowed for refinement.
  335: *>         Default: 10
  336: *>         Aggressive: Set to 100 to permit convergence using approximate
  337: *>                     factorizations or factorizations other than LU. If
  338: *>                     the factorization uses a technique other than
  339: *>                     Gaussian elimination, the guarantees in
  340: *>                     err_bnds_norm and err_bnds_comp may no longer be
  341: *>                     trustworthy.
  342: *>
  343: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  344: *>            will attempt to find a solution with small componentwise
  345: *>            relative error in the double-precision algorithm.  Positive
  346: *>            is true, 0.0 is false.
  347: *>         Default: 1.0 (attempt componentwise convergence)
  348: *> \endverbatim
  349: *>
  350: *> \param[out] WORK
  351: *> \verbatim
  352: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  353: *> \endverbatim
  354: *>
  355: *> \param[out] IWORK
  356: *> \verbatim
  357: *>          IWORK is INTEGER array, dimension (N)
  358: *> \endverbatim
  359: *>
  360: *> \param[out] INFO
  361: *> \verbatim
  362: *>          INFO is INTEGER
  363: *>       = 0:  Successful exit. The solution to every right-hand side is
  364: *>         guaranteed.
  365: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  366: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  367: *>         has been completed, but the factor U is exactly singular, so
  368: *>         the solution and error bounds could not be computed. RCOND = 0
  369: *>         is returned.
  370: *>       = N+J: The solution corresponding to the Jth right-hand side is
  371: *>         not guaranteed. The solutions corresponding to other right-
  372: *>         hand sides K with K > J may not be guaranteed as well, but
  373: *>         only the first such right-hand side is reported. If a small
  374: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  375: *>         the Jth right-hand side is the first with a normwise error
  376: *>         bound that is not guaranteed (the smallest J such
  377: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  378: *>         the Jth right-hand side is the first with either a normwise or
  379: *>         componentwise error bound that is not guaranteed (the smallest
  380: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  381: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  382: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  383: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  384: *>         ERR_BNDS_COMP.
  385: *> \endverbatim
  386: *
  387: *  Authors:
  388: *  ========
  389: *
  390: *> \author Univ. of Tennessee 
  391: *> \author Univ. of California Berkeley 
  392: *> \author Univ. of Colorado Denver 
  393: *> \author NAG Ltd. 
  394: *
  395: *> \date November 2011
  396: *
  397: *> \ingroup doubleSYcomputational
  398: *
  399: *  =====================================================================
  400:       SUBROUTINE DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
  401:      $                    S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  402:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  403:      $                    WORK, IWORK, INFO )
  404: *
  405: *  -- LAPACK computational routine (version 3.4.0) --
  406: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  407: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  408: *     November 2011
  409: *
  410: *     .. Scalar Arguments ..
  411:       CHARACTER          UPLO, EQUED
  412:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  413:      $                   N_ERR_BNDS
  414:       DOUBLE PRECISION   RCOND
  415: *     ..
  416: *     .. Array Arguments ..
  417:       INTEGER            IPIV( * ), IWORK( * )
  418:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  419:      $                   X( LDX, * ), WORK( * )
  420:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
  421:      $                   ERR_BNDS_NORM( NRHS, * ),
  422:      $                   ERR_BNDS_COMP( NRHS, * )
  423: *     ..
  424: *
  425: *  ==================================================================
  426: *
  427: *     .. Parameters ..
  428:       DOUBLE PRECISION   ZERO, ONE
  429:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  430:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
  431:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
  432:       DOUBLE PRECISION   DZTHRESH_DEFAULT
  433:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
  434:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
  435:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
  436:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
  437:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
  438:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  439:      $                   LA_LINRX_CWISE_I
  440:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  441:      $                   LA_LINRX_ITHRESH_I = 2 )
  442:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  443:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  444:      $                   LA_LINRX_RCOND_I
  445:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  446:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  447: *     ..
  448: *     .. Local Scalars ..
  449:       CHARACTER(1)       NORM
  450:       LOGICAL            RCEQU
  451:       INTEGER            J, PREC_TYPE, REF_TYPE, N_NORMS
  452:       DOUBLE PRECISION   ANORM, RCOND_TMP
  453:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
  454:       LOGICAL            IGNORE_CWISE
  455:       INTEGER            ITHRESH
  456:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
  457: *     ..
  458: *     .. External Subroutines ..
  459:       EXTERNAL           XERBLA, DSYCON, DLA_SYRFSX_EXTENDED
  460: *     ..
  461: *     .. Intrinsic Functions ..
  462:       INTRINSIC          MAX, SQRT
  463: *     ..
  464: *     .. External Functions ..
  465:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
  466:       EXTERNAL           DLAMCH, DLANSY, DLA_SYRCOND
  467:       DOUBLE PRECISION   DLAMCH, DLANSY, DLA_SYRCOND
  468:       LOGICAL            LSAME
  469:       INTEGER            BLAS_FPINFO_X
  470:       INTEGER            ILATRANS, ILAPREC
  471: *     ..
  472: *     .. Executable Statements ..
  473: *
  474: *     Check the input parameters.
  475: *
  476:       INFO = 0
  477:       REF_TYPE = INT( ITREF_DEFAULT )
  478:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
  479:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
  480:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
  481:          ELSE
  482:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
  483:          END IF
  484:       END IF
  485: *
  486: *     Set default parameters.
  487: *
  488:       ILLRCOND_THRESH = DBLE( N )*DLAMCH( 'Epsilon' )
  489:       ITHRESH = INT( ITHRESH_DEFAULT )
  490:       RTHRESH = RTHRESH_DEFAULT
  491:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
  492:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
  493: *
  494:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
  495:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
  496:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
  497:          ELSE
  498:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
  499:          END IF
  500:       END IF
  501:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
  502:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
  503:             IF ( IGNORE_CWISE ) THEN
  504:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
  505:             ELSE
  506:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
  507:             END IF
  508:          ELSE
  509:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
  510:          END IF
  511:       END IF
  512:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
  513:          N_NORMS = 0
  514:       ELSE IF ( IGNORE_CWISE ) THEN
  515:          N_NORMS = 1
  516:       ELSE
  517:          N_NORMS = 2
  518:       END IF
  519: *
  520:       RCEQU = LSAME( EQUED, 'Y' )
  521: *
  522: *     Test input parameters.
  523: *
  524:       IF ( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  525:         INFO = -1
  526:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
  527:         INFO = -2
  528:       ELSE IF( N.LT.0 ) THEN
  529:         INFO = -3
  530:       ELSE IF( NRHS.LT.0 ) THEN
  531:         INFO = -4
  532:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  533:         INFO = -6
  534:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  535:         INFO = -8
  536:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  537:         INFO = -11
  538:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  539:         INFO = -13
  540:       END IF
  541:       IF( INFO.NE.0 ) THEN
  542:         CALL XERBLA( 'DSYRFSX', -INFO )
  543:         RETURN
  544:       END IF
  545: *
  546: *     Quick return if possible.
  547: *
  548:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  549:          RCOND = 1.0D+0
  550:          DO J = 1, NRHS
  551:             BERR( J ) = 0.0D+0
  552:             IF ( N_ERR_BNDS .GE. 1 ) THEN
  553:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  554:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  555:             END IF
  556:             IF ( N_ERR_BNDS .GE. 2 ) THEN
  557:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
  558:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
  559:             END IF
  560:             IF ( N_ERR_BNDS .GE. 3 ) THEN
  561:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
  562:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
  563:             END IF
  564:          END DO
  565:          RETURN
  566:       END IF
  567: *
  568: *     Default to failure.
  569: *
  570:       RCOND = 0.0D+0
  571:       DO J = 1, NRHS
  572:          BERR( J ) = 1.0D+0
  573:          IF ( N_ERR_BNDS .GE. 1 ) THEN
  574:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  575:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  576:          END IF
  577:          IF ( N_ERR_BNDS .GE. 2 ) THEN
  578:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  579:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  580:          END IF
  581:          IF ( N_ERR_BNDS .GE. 3 ) THEN
  582:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
  583:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
  584:          END IF
  585:       END DO
  586: *
  587: *     Compute the norm of A and the reciprocal of the condition
  588: *     number of A.
  589: *
  590:       NORM = 'I'
  591:       ANORM = DLANSY( NORM, UPLO, N, A, LDA, WORK )
  592:       CALL DSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK,
  593:      $     IWORK, INFO )
  594: *
  595: *     Perform refinement on each right-hand side
  596: *
  597:       IF ( REF_TYPE .NE. 0 ) THEN
  598: 
  599:          PREC_TYPE = ILAPREC( 'E' )
  600: 
  601:          CALL DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO,  N,
  602:      $        NRHS, A, LDA, AF, LDAF, IPIV, RCEQU, S, B,
  603:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  604:      $        WORK( N+1 ), WORK( 1 ), WORK( 2*N+1 ), WORK( 1 ), RCOND,
  605:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
  606:      $        INFO )
  607:       END IF
  608: 
  609:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) )*DLAMCH( 'Epsilon' )
  610:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
  611: *
  612: *     Compute scaled normwise condition number cond(A*C).
  613: *
  614:          IF ( RCEQU ) THEN
  615:             RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
  616:      $           -1, S, INFO, WORK, IWORK )
  617:          ELSE
  618:             RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
  619:      $           0, S, INFO, WORK, IWORK )
  620:          END IF
  621:          DO J = 1, NRHS
  622: *
  623: *     Cap the error at 1.0.
  624: *
  625:             IF (N_ERR_BNDS .GE. LA_LINRX_ERR_I
  626:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0)
  627:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  628: *
  629: *     Threshold the error (see LAWN).
  630: *
  631:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  632:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  633:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
  634:                IF ( INFO .LE. N ) INFO = N + J
  635:             ELSE IF (ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND)
  636:      $              THEN
  637:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
  638:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  639:             END IF
  640: *
  641: *     Save the condition number.
  642: *
  643:             IF (N_ERR_BNDS .GE. LA_LINRX_RCOND_I) THEN
  644:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  645:             END IF
  646:          END DO
  647:       END IF
  648: 
  649:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
  650: *
  651: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
  652: *     each right-hand side using the current solution as an estimate of
  653: *     the true solution.  If the componentwise error estimate is too
  654: *     large, then the solution is a lousy estimate of truth and the
  655: *     estimated RCOND may be too optimistic.  To avoid misleading users,
  656: *     the inverse condition number is set to 0.0 when the estimated
  657: *     cwise error is at least CWISE_WRONG.
  658: *
  659:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
  660:          DO J = 1, NRHS
  661:             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
  662:      $     THEN
  663:                RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
  664:      $              1, X(1,J), INFO, WORK, IWORK )
  665:             ELSE
  666:                RCOND_TMP = 0.0D+0
  667:             END IF
  668: *
  669: *     Cap the error at 1.0.
  670: *
  671:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  672:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  673:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  674: *
  675: *     Threshold the error (see LAWN).
  676: *
  677:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  678:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  679:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
  680:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
  681:      $              .AND. INFO.LT.N + J ) INFO = N + J
  682:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
  683:      $              .LT. ERR_LBND ) THEN
  684:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
  685:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  686:             END IF
  687: *
  688: *     Save the condition number.
  689: *
  690:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  691:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  692:             END IF
  693: 
  694:          END DO
  695:       END IF
  696: *
  697:       RETURN
  698: *
  699: *     End of DSYRFSX
  700: *
  701:       END

CVSweb interface <joel.bertrand@systella.fr>