Annotation of rpl/lapack/lapack/dsyrfsx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
        !             2:      $                    S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
        !             3:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
        !             4:      $                    WORK, IWORK, INFO )
        !             5: *
        !             6: *     -- LAPACK routine (version 3.2.2)                                 --
        !             7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
        !             8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
        !             9: *     -- June 2010                                                    --
        !            10: *
        !            11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
        !            12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
        !            13: *
        !            14:       IMPLICIT NONE
        !            15: *     ..
        !            16: *     .. Scalar Arguments ..
        !            17:       CHARACTER          UPLO, EQUED
        !            18:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
        !            19:      $                   N_ERR_BNDS
        !            20:       DOUBLE PRECISION   RCOND
        !            21: *     ..
        !            22: *     .. Array Arguments ..
        !            23:       INTEGER            IPIV( * ), IWORK( * )
        !            24:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            25:      $                   X( LDX, * ), WORK( * )
        !            26:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
        !            27:      $                   ERR_BNDS_NORM( NRHS, * ),
        !            28:      $                   ERR_BNDS_COMP( NRHS, * )
        !            29: *     ..
        !            30: *
        !            31: *     Purpose
        !            32: *     =======
        !            33: *
        !            34: *     DSYRFSX improves the computed solution to a system of linear
        !            35: *     equations when the coefficient matrix is symmetric indefinite, and
        !            36: *     provides error bounds and backward error estimates for the
        !            37: *     solution.  In addition to normwise error bound, the code provides
        !            38: *     maximum componentwise error bound if possible.  See comments for
        !            39: *     ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
        !            40: *
        !            41: *     The original system of linear equations may have been equilibrated
        !            42: *     before calling this routine, as described by arguments EQUED and S
        !            43: *     below. In this case, the solution and error bounds returned are
        !            44: *     for the original unequilibrated system.
        !            45: *
        !            46: *     Arguments
        !            47: *     =========
        !            48: *
        !            49: *     Some optional parameters are bundled in the PARAMS array.  These
        !            50: *     settings determine how refinement is performed, but often the
        !            51: *     defaults are acceptable.  If the defaults are acceptable, users
        !            52: *     can pass NPARAMS = 0 which prevents the source code from accessing
        !            53: *     the PARAMS argument.
        !            54: *
        !            55: *     UPLO    (input) CHARACTER*1
        !            56: *       = 'U':  Upper triangle of A is stored;
        !            57: *       = 'L':  Lower triangle of A is stored.
        !            58: *
        !            59: *     EQUED   (input) CHARACTER*1
        !            60: *     Specifies the form of equilibration that was done to A
        !            61: *     before calling this routine. This is needed to compute
        !            62: *     the solution and error bounds correctly.
        !            63: *       = 'N':  No equilibration
        !            64: *       = 'Y':  Both row and column equilibration, i.e., A has been
        !            65: *               replaced by diag(S) * A * diag(S).
        !            66: *               The right hand side B has been changed accordingly.
        !            67: *
        !            68: *     N       (input) INTEGER
        !            69: *     The order of the matrix A.  N >= 0.
        !            70: *
        !            71: *     NRHS    (input) INTEGER
        !            72: *     The number of right hand sides, i.e., the number of columns
        !            73: *     of the matrices B and X.  NRHS >= 0.
        !            74: *
        !            75: *     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
        !            76: *     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
        !            77: *     upper triangular part of A contains the upper triangular
        !            78: *     part of the matrix A, and the strictly lower triangular
        !            79: *     part of A is not referenced.  If UPLO = 'L', the leading
        !            80: *     N-by-N lower triangular part of A contains the lower
        !            81: *     triangular part of the matrix A, and the strictly upper
        !            82: *     triangular part of A is not referenced.
        !            83: *
        !            84: *     LDA     (input) INTEGER
        !            85: *     The leading dimension of the array A.  LDA >= max(1,N).
        !            86: *
        !            87: *     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
        !            88: *     The factored form of the matrix A.  AF contains the block
        !            89: *     diagonal matrix D and the multipliers used to obtain the
        !            90: *     factor U or L from the factorization A = U*D*U**T or A =
        !            91: *     L*D*L**T as computed by DSYTRF.
        !            92: *
        !            93: *     LDAF    (input) INTEGER
        !            94: *     The leading dimension of the array AF.  LDAF >= max(1,N).
        !            95: *
        !            96: *     IPIV    (input) INTEGER array, dimension (N)
        !            97: *     Details of the interchanges and the block structure of D
        !            98: *     as determined by DSYTRF.
        !            99: *
        !           100: *     S       (input or output) DOUBLE PRECISION array, dimension (N)
        !           101: *     The scale factors for A.  If EQUED = 'Y', A is multiplied on
        !           102: *     the left and right by diag(S).  S is an input argument if FACT =
        !           103: *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
        !           104: *     = 'Y', each element of S must be positive.  If S is output, each
        !           105: *     element of S is a power of the radix. If S is input, each element
        !           106: *     of S should be a power of the radix to ensure a reliable solution
        !           107: *     and error estimates. Scaling by powers of the radix does not cause
        !           108: *     rounding errors unless the result underflows or overflows.
        !           109: *     Rounding errors during scaling lead to refining with a matrix that
        !           110: *     is not equivalent to the input matrix, producing error estimates
        !           111: *     that may not be reliable.
        !           112: *
        !           113: *     B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           114: *     The right hand side matrix B.
        !           115: *
        !           116: *     LDB     (input) INTEGER
        !           117: *     The leading dimension of the array B.  LDB >= max(1,N).
        !           118: *
        !           119: *     X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           120: *     On entry, the solution matrix X, as computed by DGETRS.
        !           121: *     On exit, the improved solution matrix X.
        !           122: *
        !           123: *     LDX     (input) INTEGER
        !           124: *     The leading dimension of the array X.  LDX >= max(1,N).
        !           125: *
        !           126: *     RCOND   (output) DOUBLE PRECISION
        !           127: *     Reciprocal scaled condition number.  This is an estimate of the
        !           128: *     reciprocal Skeel condition number of the matrix A after
        !           129: *     equilibration (if done).  If this is less than the machine
        !           130: *     precision (in particular, if it is zero), the matrix is singular
        !           131: *     to working precision.  Note that the error may still be small even
        !           132: *     if this number is very small and the matrix appears ill-
        !           133: *     conditioned.
        !           134: *
        !           135: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           136: *     Componentwise relative backward error.  This is the
        !           137: *     componentwise relative backward error of each solution vector X(j)
        !           138: *     (i.e., the smallest relative change in any element of A or B that
        !           139: *     makes X(j) an exact solution).
        !           140: *
        !           141: *     N_ERR_BNDS (input) INTEGER
        !           142: *     Number of error bounds to return for each right hand side
        !           143: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
        !           144: *     ERR_BNDS_COMP below.
        !           145: *
        !           146: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           147: *     For each right-hand side, this array contains information about
        !           148: *     various error bounds and condition numbers corresponding to the
        !           149: *     normwise relative error, which is defined as follows:
        !           150: *
        !           151: *     Normwise relative error in the ith solution vector:
        !           152: *             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           153: *            ------------------------------
        !           154: *                  max_j abs(X(j,i))
        !           155: *
        !           156: *     The array is indexed by the type of error information as described
        !           157: *     below. There currently are up to three pieces of information
        !           158: *     returned.
        !           159: *
        !           160: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           161: *     right-hand side.
        !           162: *
        !           163: *     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           164: *     three fields:
        !           165: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           166: *              reciprocal condition number is less than the threshold
        !           167: *              sqrt(n) * dlamch('Epsilon').
        !           168: *
        !           169: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           170: *              almost certainly within a factor of 10 of the true error
        !           171: *              so long as the next entry is greater than the threshold
        !           172: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           173: *              be trusted if the previous boolean is true.
        !           174: *
        !           175: *     err = 3  Reciprocal condition number: Estimated normwise
        !           176: *              reciprocal condition number.  Compared with the threshold
        !           177: *              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           178: *              estimate is "guaranteed". These reciprocal condition
        !           179: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           180: *              appropriately scaled matrix Z.
        !           181: *              Let Z = S*A, where S scales each row by a power of the
        !           182: *              radix so all absolute row sums of Z are approximately 1.
        !           183: *
        !           184: *     See Lapack Working Note 165 for further details and extra
        !           185: *     cautions.
        !           186: *
        !           187: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           188: *     For each right-hand side, this array contains information about
        !           189: *     various error bounds and condition numbers corresponding to the
        !           190: *     componentwise relative error, which is defined as follows:
        !           191: *
        !           192: *     Componentwise relative error in the ith solution vector:
        !           193: *                    abs(XTRUE(j,i) - X(j,i))
        !           194: *             max_j ----------------------
        !           195: *                         abs(X(j,i))
        !           196: *
        !           197: *     The array is indexed by the right-hand side i (on which the
        !           198: *     componentwise relative error depends), and the type of error
        !           199: *     information as described below. There currently are up to three
        !           200: *     pieces of information returned for each right-hand side. If
        !           201: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           202: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           203: *     the first (:,N_ERR_BNDS) entries are returned.
        !           204: *
        !           205: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           206: *     right-hand side.
        !           207: *
        !           208: *     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           209: *     three fields:
        !           210: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           211: *              reciprocal condition number is less than the threshold
        !           212: *              sqrt(n) * dlamch('Epsilon').
        !           213: *
        !           214: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           215: *              almost certainly within a factor of 10 of the true error
        !           216: *              so long as the next entry is greater than the threshold
        !           217: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           218: *              be trusted if the previous boolean is true.
        !           219: *
        !           220: *     err = 3  Reciprocal condition number: Estimated componentwise
        !           221: *              reciprocal condition number.  Compared with the threshold
        !           222: *              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           223: *              estimate is "guaranteed". These reciprocal condition
        !           224: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           225: *              appropriately scaled matrix Z.
        !           226: *              Let Z = S*(A*diag(x)), where x is the solution for the
        !           227: *              current right-hand side and S scales each row of
        !           228: *              A*diag(x) by a power of the radix so all absolute row
        !           229: *              sums of Z are approximately 1.
        !           230: *
        !           231: *     See Lapack Working Note 165 for further details and extra
        !           232: *     cautions.
        !           233: *
        !           234: *     NPARAMS (input) INTEGER
        !           235: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
        !           236: *     PARAMS array is never referenced and default values are used.
        !           237: *
        !           238: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
        !           239: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
        !           240: *     that entry will be filled with default value used for that
        !           241: *     parameter.  Only positions up to NPARAMS are accessed; defaults
        !           242: *     are used for higher-numbered parameters.
        !           243: *
        !           244: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
        !           245: *            refinement or not.
        !           246: *         Default: 1.0D+0
        !           247: *            = 0.0 : No refinement is performed, and no error bounds are
        !           248: *                    computed.
        !           249: *            = 1.0 : Use the double-precision refinement algorithm,
        !           250: *                    possibly with doubled-single computations if the
        !           251: *                    compilation environment does not support DOUBLE
        !           252: *                    PRECISION.
        !           253: *              (other values are reserved for future use)
        !           254: *
        !           255: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
        !           256: *            computations allowed for refinement.
        !           257: *         Default: 10
        !           258: *         Aggressive: Set to 100 to permit convergence using approximate
        !           259: *                     factorizations or factorizations other than LU. If
        !           260: *                     the factorization uses a technique other than
        !           261: *                     Gaussian elimination, the guarantees in
        !           262: *                     err_bnds_norm and err_bnds_comp may no longer be
        !           263: *                     trustworthy.
        !           264: *
        !           265: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
        !           266: *            will attempt to find a solution with small componentwise
        !           267: *            relative error in the double-precision algorithm.  Positive
        !           268: *            is true, 0.0 is false.
        !           269: *         Default: 1.0 (attempt componentwise convergence)
        !           270: *
        !           271: *     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
        !           272: *
        !           273: *     IWORK   (workspace) INTEGER array, dimension (N)
        !           274: *
        !           275: *     INFO    (output) INTEGER
        !           276: *       = 0:  Successful exit. The solution to every right-hand side is
        !           277: *         guaranteed.
        !           278: *       < 0:  If INFO = -i, the i-th argument had an illegal value
        !           279: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
        !           280: *         has been completed, but the factor U is exactly singular, so
        !           281: *         the solution and error bounds could not be computed. RCOND = 0
        !           282: *         is returned.
        !           283: *       = N+J: The solution corresponding to the Jth right-hand side is
        !           284: *         not guaranteed. The solutions corresponding to other right-
        !           285: *         hand sides K with K > J may not be guaranteed as well, but
        !           286: *         only the first such right-hand side is reported. If a small
        !           287: *         componentwise error is not requested (PARAMS(3) = 0.0) then
        !           288: *         the Jth right-hand side is the first with a normwise error
        !           289: *         bound that is not guaranteed (the smallest J such
        !           290: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
        !           291: *         the Jth right-hand side is the first with either a normwise or
        !           292: *         componentwise error bound that is not guaranteed (the smallest
        !           293: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
        !           294: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
        !           295: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
        !           296: *         about all of the right-hand sides check ERR_BNDS_NORM or
        !           297: *         ERR_BNDS_COMP.
        !           298: *
        !           299: *     ==================================================================
        !           300: *
        !           301: *     .. Parameters ..
        !           302:       DOUBLE PRECISION   ZERO, ONE
        !           303:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           304:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
        !           305:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
        !           306:       DOUBLE PRECISION   DZTHRESH_DEFAULT
        !           307:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
        !           308:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
        !           309:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
        !           310:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
        !           311:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
        !           312:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
        !           313:      $                   LA_LINRX_CWISE_I
        !           314:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
        !           315:      $                   LA_LINRX_ITHRESH_I = 2 )
        !           316:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
        !           317:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
        !           318:      $                   LA_LINRX_RCOND_I
        !           319:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
        !           320:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
        !           321: *     ..
        !           322: *     .. Local Scalars ..
        !           323:       CHARACTER(1)       NORM
        !           324:       LOGICAL            RCEQU
        !           325:       INTEGER            J, PREC_TYPE, REF_TYPE, N_NORMS
        !           326:       DOUBLE PRECISION   ANORM, RCOND_TMP
        !           327:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
        !           328:       LOGICAL            IGNORE_CWISE
        !           329:       INTEGER            ITHRESH
        !           330:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
        !           331: *     ..
        !           332: *     .. External Subroutines ..
        !           333:       EXTERNAL           XERBLA, DSYCON, DLA_SYRFSX_EXTENDED
        !           334: *     ..
        !           335: *     .. Intrinsic Functions ..
        !           336:       INTRINSIC          MAX, SQRT
        !           337: *     ..
        !           338: *     .. External Functions ..
        !           339:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
        !           340:       EXTERNAL           DLAMCH, DLANSY, DLA_SYRCOND
        !           341:       DOUBLE PRECISION   DLAMCH, DLANSY, DLA_SYRCOND
        !           342:       LOGICAL            LSAME
        !           343:       INTEGER            BLAS_FPINFO_X
        !           344:       INTEGER            ILATRANS, ILAPREC
        !           345: *     ..
        !           346: *     .. Executable Statements ..
        !           347: *
        !           348: *     Check the input parameters.
        !           349: *
        !           350:       INFO = 0
        !           351:       REF_TYPE = INT( ITREF_DEFAULT )
        !           352:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
        !           353:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
        !           354:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
        !           355:          ELSE
        !           356:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
        !           357:          END IF
        !           358:       END IF
        !           359: *
        !           360: *     Set default parameters.
        !           361: *
        !           362:       ILLRCOND_THRESH = DBLE( N )*DLAMCH( 'Epsilon' )
        !           363:       ITHRESH = INT( ITHRESH_DEFAULT )
        !           364:       RTHRESH = RTHRESH_DEFAULT
        !           365:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
        !           366:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
        !           367: *
        !           368:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
        !           369:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
        !           370:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
        !           371:          ELSE
        !           372:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
        !           373:          END IF
        !           374:       END IF
        !           375:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
        !           376:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
        !           377:             IF ( IGNORE_CWISE ) THEN
        !           378:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
        !           379:             ELSE
        !           380:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
        !           381:             END IF
        !           382:          ELSE
        !           383:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
        !           384:          END IF
        !           385:       END IF
        !           386:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
        !           387:          N_NORMS = 0
        !           388:       ELSE IF ( IGNORE_CWISE ) THEN
        !           389:          N_NORMS = 1
        !           390:       ELSE
        !           391:          N_NORMS = 2
        !           392:       END IF
        !           393: *
        !           394:       RCEQU = LSAME( EQUED, 'Y' )
        !           395: *
        !           396: *     Test input parameters.
        !           397: *
        !           398:       IF ( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           399:         INFO = -1
        !           400:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
        !           401:         INFO = -2
        !           402:       ELSE IF( N.LT.0 ) THEN
        !           403:         INFO = -3
        !           404:       ELSE IF( NRHS.LT.0 ) THEN
        !           405:         INFO = -4
        !           406:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           407:         INFO = -6
        !           408:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
        !           409:         INFO = -8
        !           410:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           411:         INFO = -11
        !           412:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           413:         INFO = -13
        !           414:       END IF
        !           415:       IF( INFO.NE.0 ) THEN
        !           416:         CALL XERBLA( 'DSYRFSX', -INFO )
        !           417:         RETURN
        !           418:       END IF
        !           419: *
        !           420: *     Quick return if possible.
        !           421: *
        !           422:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           423:          RCOND = 1.0D+0
        !           424:          DO J = 1, NRHS
        !           425:             BERR( J ) = 0.0D+0
        !           426:             IF ( N_ERR_BNDS .GE. 1 ) THEN
        !           427:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           428:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           429:             END IF
        !           430:             IF ( N_ERR_BNDS .GE. 2 ) THEN
        !           431:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
        !           432:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
        !           433:             END IF
        !           434:             IF ( N_ERR_BNDS .GE. 3 ) THEN
        !           435:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
        !           436:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
        !           437:             END IF
        !           438:          END DO
        !           439:          RETURN
        !           440:       END IF
        !           441: *
        !           442: *     Default to failure.
        !           443: *
        !           444:       RCOND = 0.0D+0
        !           445:       DO J = 1, NRHS
        !           446:          BERR( J ) = 1.0D+0
        !           447:          IF ( N_ERR_BNDS .GE. 1 ) THEN
        !           448:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           449:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           450:          END IF
        !           451:          IF ( N_ERR_BNDS .GE. 2 ) THEN
        !           452:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           453:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           454:          END IF
        !           455:          IF ( N_ERR_BNDS .GE. 3 ) THEN
        !           456:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
        !           457:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
        !           458:          END IF
        !           459:       END DO
        !           460: *
        !           461: *     Compute the norm of A and the reciprocal of the condition
        !           462: *     number of A.
        !           463: *
        !           464:       NORM = 'I'
        !           465:       ANORM = DLANSY( NORM, UPLO, N, A, LDA, WORK )
        !           466:       CALL DSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK,
        !           467:      $     IWORK, INFO )
        !           468: *
        !           469: *     Perform refinement on each right-hand side
        !           470: *
        !           471:       IF ( REF_TYPE .NE. 0 ) THEN
        !           472: 
        !           473:          PREC_TYPE = ILAPREC( 'E' )
        !           474: 
        !           475:          CALL DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO,  N,
        !           476:      $        NRHS, A, LDA, AF, LDAF, IPIV, RCEQU, S, B,
        !           477:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
        !           478:      $        WORK( N+1 ), WORK( 1 ), WORK( 2*N+1 ), WORK( 1 ), RCOND,
        !           479:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
        !           480:      $        INFO )
        !           481:       END IF
        !           482: 
        !           483:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) )*DLAMCH( 'Epsilon' )
        !           484:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
        !           485: *
        !           486: *     Compute scaled normwise condition number cond(A*C).
        !           487: *
        !           488:          IF ( RCEQU ) THEN
        !           489:             RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
        !           490:      $           -1, S, INFO, WORK, IWORK )
        !           491:          ELSE
        !           492:             RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
        !           493:      $           0, S, INFO, WORK, IWORK )
        !           494:          END IF
        !           495:          DO J = 1, NRHS
        !           496: *
        !           497: *     Cap the error at 1.0.
        !           498: *
        !           499:             IF (N_ERR_BNDS .GE. LA_LINRX_ERR_I
        !           500:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0)
        !           501:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           502: *
        !           503: *     Threshold the error (see LAWN).
        !           504: *
        !           505:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
        !           506:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           507:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
        !           508:                IF ( INFO .LE. N ) INFO = N + J
        !           509:             ELSE IF (ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND)
        !           510:      $              THEN
        !           511:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
        !           512:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           513:             END IF
        !           514: *
        !           515: *     Save the condition number.
        !           516: *
        !           517:             IF (N_ERR_BNDS .GE. LA_LINRX_RCOND_I) THEN
        !           518:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
        !           519:             END IF
        !           520:          END DO
        !           521:       END IF
        !           522: 
        !           523:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
        !           524: *
        !           525: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
        !           526: *     each right-hand side using the current solution as an estimate of
        !           527: *     the true solution.  If the componentwise error estimate is too
        !           528: *     large, then the solution is a lousy estimate of truth and the
        !           529: *     estimated RCOND may be too optimistic.  To avoid misleading users,
        !           530: *     the inverse condition number is set to 0.0 when the estimated
        !           531: *     cwise error is at least CWISE_WRONG.
        !           532: *
        !           533:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
        !           534:          DO J = 1, NRHS
        !           535:             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
        !           536:      $     THEN
        !           537:                RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
        !           538:      $              1, X(1,J), INFO, WORK, IWORK )
        !           539:             ELSE
        !           540:                RCOND_TMP = 0.0D+0
        !           541:             END IF
        !           542: *
        !           543: *     Cap the error at 1.0.
        !           544: *
        !           545:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
        !           546:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
        !           547:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           548: *
        !           549: *     Threshold the error (see LAWN).
        !           550: *
        !           551:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
        !           552:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           553:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
        !           554:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
        !           555:      $              .AND. INFO.LT.N + J ) INFO = N + J
        !           556:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
        !           557:      $              .LT. ERR_LBND ) THEN
        !           558:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
        !           559:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           560:             END IF
        !           561: *
        !           562: *     Save the condition number.
        !           563: *
        !           564:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
        !           565:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
        !           566:             END IF
        !           567: 
        !           568:          END DO
        !           569:       END IF
        !           570: *
        !           571:       RETURN
        !           572: *
        !           573: *     End of DSYRFSX
        !           574: *
        !           575:       END

CVSweb interface <joel.bertrand@systella.fr>