File:  [local] / rpl / lapack / lapack / dsyrfs.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
    2:      $                   X, LDX, FERR, BERR, WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          UPLO
   13:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * ), IWORK( * )
   17:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   18:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DSYRFS improves the computed solution to a system of linear
   25: *  equations when the coefficient matrix is symmetric indefinite, and
   26: *  provides error bounds and backward error estimates for the solution.
   27: *
   28: *  Arguments
   29: *  =========
   30: *
   31: *  UPLO    (input) CHARACTER*1
   32: *          = 'U':  Upper triangle of A is stored;
   33: *          = 'L':  Lower triangle of A is stored.
   34: *
   35: *  N       (input) INTEGER
   36: *          The order of the matrix A.  N >= 0.
   37: *
   38: *  NRHS    (input) INTEGER
   39: *          The number of right hand sides, i.e., the number of columns
   40: *          of the matrices B and X.  NRHS >= 0.
   41: *
   42: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   43: *          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
   44: *          upper triangular part of A contains the upper triangular part
   45: *          of the matrix A, and the strictly lower triangular part of A
   46: *          is not referenced.  If UPLO = 'L', the leading N-by-N lower
   47: *          triangular part of A contains the lower triangular part of
   48: *          the matrix A, and the strictly upper triangular part of A is
   49: *          not referenced.
   50: *
   51: *  LDA     (input) INTEGER
   52: *          The leading dimension of the array A.  LDA >= max(1,N).
   53: *
   54: *  AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
   55: *          The factored form of the matrix A.  AF contains the block
   56: *          diagonal matrix D and the multipliers used to obtain the
   57: *          factor U or L from the factorization A = U*D*U**T or
   58: *          A = L*D*L**T as computed by DSYTRF.
   59: *
   60: *  LDAF    (input) INTEGER
   61: *          The leading dimension of the array AF.  LDAF >= max(1,N).
   62: *
   63: *  IPIV    (input) INTEGER array, dimension (N)
   64: *          Details of the interchanges and the block structure of D
   65: *          as determined by DSYTRF.
   66: *
   67: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   68: *          The right hand side matrix B.
   69: *
   70: *  LDB     (input) INTEGER
   71: *          The leading dimension of the array B.  LDB >= max(1,N).
   72: *
   73: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
   74: *          On entry, the solution matrix X, as computed by DSYTRS.
   75: *          On exit, the improved solution matrix X.
   76: *
   77: *  LDX     (input) INTEGER
   78: *          The leading dimension of the array X.  LDX >= max(1,N).
   79: *
   80: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   81: *          The estimated forward error bound for each solution vector
   82: *          X(j) (the j-th column of the solution matrix X).
   83: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   84: *          is an estimated upper bound for the magnitude of the largest
   85: *          element in (X(j) - XTRUE) divided by the magnitude of the
   86: *          largest element in X(j).  The estimate is as reliable as
   87: *          the estimate for RCOND, and is almost always a slight
   88: *          overestimate of the true error.
   89: *
   90: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   91: *          The componentwise relative backward error of each solution
   92: *          vector X(j) (i.e., the smallest relative change in
   93: *          any element of A or B that makes X(j) an exact solution).
   94: *
   95: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
   96: *
   97: *  IWORK   (workspace) INTEGER array, dimension (N)
   98: *
   99: *  INFO    (output) INTEGER
  100: *          = 0:  successful exit
  101: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  102: *
  103: *  Internal Parameters
  104: *  ===================
  105: *
  106: *  ITMAX is the maximum number of steps of iterative refinement.
  107: *
  108: *  =====================================================================
  109: *
  110: *     .. Parameters ..
  111:       INTEGER            ITMAX
  112:       PARAMETER          ( ITMAX = 5 )
  113:       DOUBLE PRECISION   ZERO
  114:       PARAMETER          ( ZERO = 0.0D+0 )
  115:       DOUBLE PRECISION   ONE
  116:       PARAMETER          ( ONE = 1.0D+0 )
  117:       DOUBLE PRECISION   TWO
  118:       PARAMETER          ( TWO = 2.0D+0 )
  119:       DOUBLE PRECISION   THREE
  120:       PARAMETER          ( THREE = 3.0D+0 )
  121: *     ..
  122: *     .. Local Scalars ..
  123:       LOGICAL            UPPER
  124:       INTEGER            COUNT, I, J, K, KASE, NZ
  125:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  126: *     ..
  127: *     .. Local Arrays ..
  128:       INTEGER            ISAVE( 3 )
  129: *     ..
  130: *     .. External Subroutines ..
  131:       EXTERNAL           DAXPY, DCOPY, DLACN2, DSYMV, DSYTRS, XERBLA
  132: *     ..
  133: *     .. Intrinsic Functions ..
  134:       INTRINSIC          ABS, MAX
  135: *     ..
  136: *     .. External Functions ..
  137:       LOGICAL            LSAME
  138:       DOUBLE PRECISION   DLAMCH
  139:       EXTERNAL           LSAME, DLAMCH
  140: *     ..
  141: *     .. Executable Statements ..
  142: *
  143: *     Test the input parameters.
  144: *
  145:       INFO = 0
  146:       UPPER = LSAME( UPLO, 'U' )
  147:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  148:          INFO = -1
  149:       ELSE IF( N.LT.0 ) THEN
  150:          INFO = -2
  151:       ELSE IF( NRHS.LT.0 ) THEN
  152:          INFO = -3
  153:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  154:          INFO = -5
  155:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  156:          INFO = -7
  157:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  158:          INFO = -10
  159:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  160:          INFO = -12
  161:       END IF
  162:       IF( INFO.NE.0 ) THEN
  163:          CALL XERBLA( 'DSYRFS', -INFO )
  164:          RETURN
  165:       END IF
  166: *
  167: *     Quick return if possible
  168: *
  169:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  170:          DO 10 J = 1, NRHS
  171:             FERR( J ) = ZERO
  172:             BERR( J ) = ZERO
  173:    10    CONTINUE
  174:          RETURN
  175:       END IF
  176: *
  177: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  178: *
  179:       NZ = N + 1
  180:       EPS = DLAMCH( 'Epsilon' )
  181:       SAFMIN = DLAMCH( 'Safe minimum' )
  182:       SAFE1 = NZ*SAFMIN
  183:       SAFE2 = SAFE1 / EPS
  184: *
  185: *     Do for each right hand side
  186: *
  187:       DO 140 J = 1, NRHS
  188: *
  189:          COUNT = 1
  190:          LSTRES = THREE
  191:    20    CONTINUE
  192: *
  193: *        Loop until stopping criterion is satisfied.
  194: *
  195: *        Compute residual R = B - A * X
  196: *
  197:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  198:          CALL DSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
  199:      $               WORK( N+1 ), 1 )
  200: *
  201: *        Compute componentwise relative backward error from formula
  202: *
  203: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  204: *
  205: *        where abs(Z) is the componentwise absolute value of the matrix
  206: *        or vector Z.  If the i-th component of the denominator is less
  207: *        than SAFE2, then SAFE1 is added to the i-th components of the
  208: *        numerator and denominator before dividing.
  209: *
  210:          DO 30 I = 1, N
  211:             WORK( I ) = ABS( B( I, J ) )
  212:    30    CONTINUE
  213: *
  214: *        Compute abs(A)*abs(X) + abs(B).
  215: *
  216:          IF( UPPER ) THEN
  217:             DO 50 K = 1, N
  218:                S = ZERO
  219:                XK = ABS( X( K, J ) )
  220:                DO 40 I = 1, K - 1
  221:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  222:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  223:    40          CONTINUE
  224:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + S
  225:    50       CONTINUE
  226:          ELSE
  227:             DO 70 K = 1, N
  228:                S = ZERO
  229:                XK = ABS( X( K, J ) )
  230:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK
  231:                DO 60 I = K + 1, N
  232:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  233:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  234:    60          CONTINUE
  235:                WORK( K ) = WORK( K ) + S
  236:    70       CONTINUE
  237:          END IF
  238:          S = ZERO
  239:          DO 80 I = 1, N
  240:             IF( WORK( I ).GT.SAFE2 ) THEN
  241:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  242:             ELSE
  243:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  244:      $             ( WORK( I )+SAFE1 ) )
  245:             END IF
  246:    80    CONTINUE
  247:          BERR( J ) = S
  248: *
  249: *        Test stopping criterion. Continue iterating if
  250: *           1) The residual BERR(J) is larger than machine epsilon, and
  251: *           2) BERR(J) decreased by at least a factor of 2 during the
  252: *              last iteration, and
  253: *           3) At most ITMAX iterations tried.
  254: *
  255:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  256:      $       COUNT.LE.ITMAX ) THEN
  257: *
  258: *           Update solution and try again.
  259: *
  260:             CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  261:      $                   INFO )
  262:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  263:             LSTRES = BERR( J )
  264:             COUNT = COUNT + 1
  265:             GO TO 20
  266:          END IF
  267: *
  268: *        Bound error from formula
  269: *
  270: *        norm(X - XTRUE) / norm(X) .le. FERR =
  271: *        norm( abs(inv(A))*
  272: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  273: *
  274: *        where
  275: *          norm(Z) is the magnitude of the largest component of Z
  276: *          inv(A) is the inverse of A
  277: *          abs(Z) is the componentwise absolute value of the matrix or
  278: *             vector Z
  279: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  280: *          EPS is machine epsilon
  281: *
  282: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  283: *        is incremented by SAFE1 if the i-th component of
  284: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  285: *
  286: *        Use DLACN2 to estimate the infinity-norm of the matrix
  287: *           inv(A) * diag(W),
  288: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  289: *
  290:          DO 90 I = 1, N
  291:             IF( WORK( I ).GT.SAFE2 ) THEN
  292:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  293:             ELSE
  294:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  295:             END IF
  296:    90    CONTINUE
  297: *
  298:          KASE = 0
  299:   100    CONTINUE
  300:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  301:      $                KASE, ISAVE )
  302:          IF( KASE.NE.0 ) THEN
  303:             IF( KASE.EQ.1 ) THEN
  304: *
  305: *              Multiply by diag(W)*inv(A').
  306: *
  307:                CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  308:      $                      INFO )
  309:                DO 110 I = 1, N
  310:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  311:   110          CONTINUE
  312:             ELSE IF( KASE.EQ.2 ) THEN
  313: *
  314: *              Multiply by inv(A)*diag(W).
  315: *
  316:                DO 120 I = 1, N
  317:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  318:   120          CONTINUE
  319:                CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  320:      $                      INFO )
  321:             END IF
  322:             GO TO 100
  323:          END IF
  324: *
  325: *        Normalize error.
  326: *
  327:          LSTRES = ZERO
  328:          DO 130 I = 1, N
  329:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  330:   130    CONTINUE
  331:          IF( LSTRES.NE.ZERO )
  332:      $      FERR( J ) = FERR( J ) / LSTRES
  333: *
  334:   140 CONTINUE
  335: *
  336:       RETURN
  337: *
  338: *     End of DSYRFS
  339: *
  340:       END

CVSweb interface <joel.bertrand@systella.fr>