Annotation of rpl/lapack/lapack/dsyrfs.f, revision 1.18

1.9       bertrand    1: *> \brief \b DSYRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DSYRFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyrfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyrfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyrfs.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                     22: *                          X, LDX, FERR, BERR, WORK, IWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * ), IWORK( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     31: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     32: *       ..
1.15      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DSYRFS improves the computed solution to a system of linear
                     41: *> equations when the coefficient matrix is symmetric indefinite, and
                     42: *> provides error bounds and backward error estimates for the solution.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] UPLO
                     49: *> \verbatim
                     50: *>          UPLO is CHARACTER*1
                     51: *>          = 'U':  Upper triangle of A is stored;
                     52: *>          = 'L':  Lower triangle of A is stored.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The order of the matrix A.  N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] NRHS
                     62: *> \verbatim
                     63: *>          NRHS is INTEGER
                     64: *>          The number of right hand sides, i.e., the number of columns
                     65: *>          of the matrices B and X.  NRHS >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] A
                     69: *> \verbatim
                     70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     71: *>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                     72: *>          upper triangular part of A contains the upper triangular part
                     73: *>          of the matrix A, and the strictly lower triangular part of A
                     74: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
                     75: *>          triangular part of A contains the lower triangular part of
                     76: *>          the matrix A, and the strictly upper triangular part of A is
                     77: *>          not referenced.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] LDA
                     81: *> \verbatim
                     82: *>          LDA is INTEGER
                     83: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] AF
                     87: *> \verbatim
                     88: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
                     89: *>          The factored form of the matrix A.  AF contains the block
                     90: *>          diagonal matrix D and the multipliers used to obtain the
                     91: *>          factor U or L from the factorization A = U*D*U**T or
                     92: *>          A = L*D*L**T as computed by DSYTRF.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDAF
                     96: *> \verbatim
                     97: *>          LDAF is INTEGER
                     98: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] IPIV
                    102: *> \verbatim
                    103: *>          IPIV is INTEGER array, dimension (N)
                    104: *>          Details of the interchanges and the block structure of D
                    105: *>          as determined by DSYTRF.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] B
                    109: *> \verbatim
                    110: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    111: *>          The right hand side matrix B.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] LDB
                    115: *> \verbatim
                    116: *>          LDB is INTEGER
                    117: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in,out] X
                    121: *> \verbatim
                    122: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    123: *>          On entry, the solution matrix X, as computed by DSYTRS.
                    124: *>          On exit, the improved solution matrix X.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] LDX
                    128: *> \verbatim
                    129: *>          LDX is INTEGER
                    130: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[out] FERR
                    134: *> \verbatim
                    135: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    136: *>          The estimated forward error bound for each solution vector
                    137: *>          X(j) (the j-th column of the solution matrix X).
                    138: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    139: *>          is an estimated upper bound for the magnitude of the largest
                    140: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    141: *>          largest element in X(j).  The estimate is as reliable as
                    142: *>          the estimate for RCOND, and is almost always a slight
                    143: *>          overestimate of the true error.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[out] BERR
                    147: *> \verbatim
                    148: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    149: *>          The componentwise relative backward error of each solution
                    150: *>          vector X(j) (i.e., the smallest relative change in
                    151: *>          any element of A or B that makes X(j) an exact solution).
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[out] WORK
                    155: *> \verbatim
                    156: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] IWORK
                    160: *> \verbatim
                    161: *>          IWORK is INTEGER array, dimension (N)
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] INFO
                    165: *> \verbatim
                    166: *>          INFO is INTEGER
                    167: *>          = 0:  successful exit
                    168: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    169: *> \endverbatim
                    170: *
                    171: *> \par Internal Parameters:
                    172: *  =========================
                    173: *>
                    174: *> \verbatim
                    175: *>  ITMAX is the maximum number of steps of iterative refinement.
                    176: *> \endverbatim
                    177: *
                    178: *  Authors:
                    179: *  ========
                    180: *
1.15      bertrand  181: *> \author Univ. of Tennessee
                    182: *> \author Univ. of California Berkeley
                    183: *> \author Univ. of Colorado Denver
                    184: *> \author NAG Ltd.
1.9       bertrand  185: *
                    186: *> \ingroup doubleSYcomputational
                    187: *
                    188: *  =====================================================================
1.1       bertrand  189:       SUBROUTINE DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                    190:      $                   X, LDX, FERR, BERR, WORK, IWORK, INFO )
                    191: *
1.18    ! bertrand  192: *  -- LAPACK computational routine --
1.1       bertrand  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    195: *
                    196: *     .. Scalar Arguments ..
                    197:       CHARACTER          UPLO
                    198:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    199: *     ..
                    200: *     .. Array Arguments ..
                    201:       INTEGER            IPIV( * ), IWORK( * )
                    202:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    203:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                    204: *     ..
                    205: *
                    206: *  =====================================================================
                    207: *
                    208: *     .. Parameters ..
                    209:       INTEGER            ITMAX
                    210:       PARAMETER          ( ITMAX = 5 )
                    211:       DOUBLE PRECISION   ZERO
                    212:       PARAMETER          ( ZERO = 0.0D+0 )
                    213:       DOUBLE PRECISION   ONE
                    214:       PARAMETER          ( ONE = 1.0D+0 )
                    215:       DOUBLE PRECISION   TWO
                    216:       PARAMETER          ( TWO = 2.0D+0 )
                    217:       DOUBLE PRECISION   THREE
                    218:       PARAMETER          ( THREE = 3.0D+0 )
                    219: *     ..
                    220: *     .. Local Scalars ..
                    221:       LOGICAL            UPPER
                    222:       INTEGER            COUNT, I, J, K, KASE, NZ
                    223:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    224: *     ..
                    225: *     .. Local Arrays ..
                    226:       INTEGER            ISAVE( 3 )
                    227: *     ..
                    228: *     .. External Subroutines ..
                    229:       EXTERNAL           DAXPY, DCOPY, DLACN2, DSYMV, DSYTRS, XERBLA
                    230: *     ..
                    231: *     .. Intrinsic Functions ..
                    232:       INTRINSIC          ABS, MAX
                    233: *     ..
                    234: *     .. External Functions ..
                    235:       LOGICAL            LSAME
                    236:       DOUBLE PRECISION   DLAMCH
                    237:       EXTERNAL           LSAME, DLAMCH
                    238: *     ..
                    239: *     .. Executable Statements ..
                    240: *
                    241: *     Test the input parameters.
                    242: *
                    243:       INFO = 0
                    244:       UPPER = LSAME( UPLO, 'U' )
                    245:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    246:          INFO = -1
                    247:       ELSE IF( N.LT.0 ) THEN
                    248:          INFO = -2
                    249:       ELSE IF( NRHS.LT.0 ) THEN
                    250:          INFO = -3
                    251:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    252:          INFO = -5
                    253:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    254:          INFO = -7
                    255:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    256:          INFO = -10
                    257:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    258:          INFO = -12
                    259:       END IF
                    260:       IF( INFO.NE.0 ) THEN
                    261:          CALL XERBLA( 'DSYRFS', -INFO )
                    262:          RETURN
                    263:       END IF
                    264: *
                    265: *     Quick return if possible
                    266: *
                    267:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    268:          DO 10 J = 1, NRHS
                    269:             FERR( J ) = ZERO
                    270:             BERR( J ) = ZERO
                    271:    10    CONTINUE
                    272:          RETURN
                    273:       END IF
                    274: *
                    275: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    276: *
                    277:       NZ = N + 1
                    278:       EPS = DLAMCH( 'Epsilon' )
                    279:       SAFMIN = DLAMCH( 'Safe minimum' )
                    280:       SAFE1 = NZ*SAFMIN
                    281:       SAFE2 = SAFE1 / EPS
                    282: *
                    283: *     Do for each right hand side
                    284: *
                    285:       DO 140 J = 1, NRHS
                    286: *
                    287:          COUNT = 1
                    288:          LSTRES = THREE
                    289:    20    CONTINUE
                    290: *
                    291: *        Loop until stopping criterion is satisfied.
                    292: *
                    293: *        Compute residual R = B - A * X
                    294: *
                    295:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    296:          CALL DSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
                    297:      $               WORK( N+1 ), 1 )
                    298: *
                    299: *        Compute componentwise relative backward error from formula
                    300: *
                    301: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    302: *
                    303: *        where abs(Z) is the componentwise absolute value of the matrix
                    304: *        or vector Z.  If the i-th component of the denominator is less
                    305: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    306: *        numerator and denominator before dividing.
                    307: *
                    308:          DO 30 I = 1, N
                    309:             WORK( I ) = ABS( B( I, J ) )
                    310:    30    CONTINUE
                    311: *
                    312: *        Compute abs(A)*abs(X) + abs(B).
                    313: *
                    314:          IF( UPPER ) THEN
                    315:             DO 50 K = 1, N
                    316:                S = ZERO
                    317:                XK = ABS( X( K, J ) )
                    318:                DO 40 I = 1, K - 1
                    319:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
                    320:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
                    321:    40          CONTINUE
                    322:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + S
                    323:    50       CONTINUE
                    324:          ELSE
                    325:             DO 70 K = 1, N
                    326:                S = ZERO
                    327:                XK = ABS( X( K, J ) )
                    328:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK
                    329:                DO 60 I = K + 1, N
                    330:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
                    331:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
                    332:    60          CONTINUE
                    333:                WORK( K ) = WORK( K ) + S
                    334:    70       CONTINUE
                    335:          END IF
                    336:          S = ZERO
                    337:          DO 80 I = 1, N
                    338:             IF( WORK( I ).GT.SAFE2 ) THEN
                    339:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    340:             ELSE
                    341:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    342:      $             ( WORK( I )+SAFE1 ) )
                    343:             END IF
                    344:    80    CONTINUE
                    345:          BERR( J ) = S
                    346: *
                    347: *        Test stopping criterion. Continue iterating if
                    348: *           1) The residual BERR(J) is larger than machine epsilon, and
                    349: *           2) BERR(J) decreased by at least a factor of 2 during the
                    350: *              last iteration, and
                    351: *           3) At most ITMAX iterations tried.
                    352: *
                    353:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    354:      $       COUNT.LE.ITMAX ) THEN
                    355: *
                    356: *           Update solution and try again.
                    357: *
                    358:             CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
                    359:      $                   INFO )
                    360:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    361:             LSTRES = BERR( J )
                    362:             COUNT = COUNT + 1
                    363:             GO TO 20
                    364:          END IF
                    365: *
                    366: *        Bound error from formula
                    367: *
                    368: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    369: *        norm( abs(inv(A))*
                    370: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    371: *
                    372: *        where
                    373: *          norm(Z) is the magnitude of the largest component of Z
                    374: *          inv(A) is the inverse of A
                    375: *          abs(Z) is the componentwise absolute value of the matrix or
                    376: *             vector Z
                    377: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    378: *          EPS is machine epsilon
                    379: *
                    380: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    381: *        is incremented by SAFE1 if the i-th component of
                    382: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    383: *
                    384: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    385: *           inv(A) * diag(W),
                    386: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    387: *
                    388:          DO 90 I = 1, N
                    389:             IF( WORK( I ).GT.SAFE2 ) THEN
                    390:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    391:             ELSE
                    392:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    393:             END IF
                    394:    90    CONTINUE
                    395: *
                    396:          KASE = 0
                    397:   100    CONTINUE
                    398:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    399:      $                KASE, ISAVE )
                    400:          IF( KASE.NE.0 ) THEN
                    401:             IF( KASE.EQ.1 ) THEN
                    402: *
1.8       bertrand  403: *              Multiply by diag(W)*inv(A**T).
1.1       bertrand  404: *
                    405:                CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
                    406:      $                      INFO )
                    407:                DO 110 I = 1, N
                    408:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    409:   110          CONTINUE
                    410:             ELSE IF( KASE.EQ.2 ) THEN
                    411: *
                    412: *              Multiply by inv(A)*diag(W).
                    413: *
                    414:                DO 120 I = 1, N
                    415:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    416:   120          CONTINUE
                    417:                CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
                    418:      $                      INFO )
                    419:             END IF
                    420:             GO TO 100
                    421:          END IF
                    422: *
                    423: *        Normalize error.
                    424: *
                    425:          LSTRES = ZERO
                    426:          DO 130 I = 1, N
                    427:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    428:   130    CONTINUE
                    429:          IF( LSTRES.NE.ZERO )
                    430:      $      FERR( J ) = FERR( J ) / LSTRES
                    431: *
                    432:   140 CONTINUE
                    433: *
                    434:       RETURN
                    435: *
                    436: *     End of DSYRFS
                    437: *
                    438:       END

CVSweb interface <joel.bertrand@systella.fr>