Annotation of rpl/lapack/lapack/dsygvx.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
                      2:      $                   VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
                      3:      $                   LWORK, IWORK, IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
                     18:      $                   Z( LDZ, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DSYGVX computes selected eigenvalues, and optionally, eigenvectors
                     25: *  of a real generalized symmetric-definite eigenproblem, of the form
                     26: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A
                     27: *  and B are assumed to be symmetric and B is also positive definite.
                     28: *  Eigenvalues and eigenvectors can be selected by specifying either a
                     29: *  range of values or a range of indices for the desired eigenvalues.
                     30: *
                     31: *  Arguments
                     32: *  =========
                     33: *
                     34: *  ITYPE   (input) INTEGER
                     35: *          Specifies the problem type to be solved:
                     36: *          = 1:  A*x = (lambda)*B*x
                     37: *          = 2:  A*B*x = (lambda)*x
                     38: *          = 3:  B*A*x = (lambda)*x
                     39: *
                     40: *  JOBZ    (input) CHARACTER*1
                     41: *          = 'N':  Compute eigenvalues only;
                     42: *          = 'V':  Compute eigenvalues and eigenvectors.
                     43: *
                     44: *  RANGE   (input) CHARACTER*1
                     45: *          = 'A': all eigenvalues will be found.
                     46: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     47: *                 will be found.
                     48: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     49: *
                     50: *  UPLO    (input) CHARACTER*1
                     51: *          = 'U':  Upper triangle of A and B are stored;
                     52: *          = 'L':  Lower triangle of A and B are stored.
                     53: *
                     54: *  N       (input) INTEGER
                     55: *          The order of the matrix pencil (A,B).  N >= 0.
                     56: *
                     57: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     58: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     59: *          leading N-by-N upper triangular part of A contains the
                     60: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     61: *          the leading N-by-N lower triangular part of A contains
                     62: *          the lower triangular part of the matrix A.
                     63: *
                     64: *          On exit, the lower triangle (if UPLO='L') or the upper
                     65: *          triangle (if UPLO='U') of A, including the diagonal, is
                     66: *          destroyed.
                     67: *
                     68: *  LDA     (input) INTEGER
                     69: *          The leading dimension of the array A.  LDA >= max(1,N).
                     70: *
                     71: *  B       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     72: *          On entry, the symmetric matrix B.  If UPLO = 'U', the
                     73: *          leading N-by-N upper triangular part of B contains the
                     74: *          upper triangular part of the matrix B.  If UPLO = 'L',
                     75: *          the leading N-by-N lower triangular part of B contains
                     76: *          the lower triangular part of the matrix B.
                     77: *
                     78: *          On exit, if INFO <= N, the part of B containing the matrix is
                     79: *          overwritten by the triangular factor U or L from the Cholesky
                     80: *          factorization B = U**T*U or B = L*L**T.
                     81: *
                     82: *  LDB     (input) INTEGER
                     83: *          The leading dimension of the array B.  LDB >= max(1,N).
                     84: *
                     85: *  VL      (input) DOUBLE PRECISION
                     86: *  VU      (input) DOUBLE PRECISION
                     87: *          If RANGE='V', the lower and upper bounds of the interval to
                     88: *          be searched for eigenvalues. VL < VU.
                     89: *          Not referenced if RANGE = 'A' or 'I'.
                     90: *
                     91: *  IL      (input) INTEGER
                     92: *  IU      (input) INTEGER
                     93: *          If RANGE='I', the indices (in ascending order) of the
                     94: *          smallest and largest eigenvalues to be returned.
                     95: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     96: *          Not referenced if RANGE = 'A' or 'V'.
                     97: *
                     98: *  ABSTOL  (input) DOUBLE PRECISION
                     99: *          The absolute error tolerance for the eigenvalues.
                    100: *          An approximate eigenvalue is accepted as converged
                    101: *          when it is determined to lie in an interval [a,b]
                    102: *          of width less than or equal to
                    103: *
                    104: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    105: *
                    106: *          where EPS is the machine precision.  If ABSTOL is less than
                    107: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    108: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    109: *          by reducing A to tridiagonal form.
                    110: *
                    111: *          Eigenvalues will be computed most accurately when ABSTOL is
                    112: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    113: *          If this routine returns with INFO>0, indicating that some
                    114: *          eigenvectors did not converge, try setting ABSTOL to
                    115: *          2*DLAMCH('S').
                    116: *
                    117: *  M       (output) INTEGER
                    118: *          The total number of eigenvalues found.  0 <= M <= N.
                    119: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    120: *
                    121: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    122: *          On normal exit, the first M elements contain the selected
                    123: *          eigenvalues in ascending order.
                    124: *
                    125: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    126: *          If JOBZ = 'N', then Z is not referenced.
                    127: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    128: *          contain the orthonormal eigenvectors of the matrix A
                    129: *          corresponding to the selected eigenvalues, with the i-th
                    130: *          column of Z holding the eigenvector associated with W(i).
                    131: *          The eigenvectors are normalized as follows:
                    132: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
                    133: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
                    134: *
                    135: *          If an eigenvector fails to converge, then that column of Z
                    136: *          contains the latest approximation to the eigenvector, and the
                    137: *          index of the eigenvector is returned in IFAIL.
                    138: *          Note: the user must ensure that at least max(1,M) columns are
                    139: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    140: *          is not known in advance and an upper bound must be used.
                    141: *
                    142: *  LDZ     (input) INTEGER
                    143: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    144: *          JOBZ = 'V', LDZ >= max(1,N).
                    145: *
                    146: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    147: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    148: *
                    149: *  LWORK   (input) INTEGER
                    150: *          The length of the array WORK.  LWORK >= max(1,8*N).
                    151: *          For optimal efficiency, LWORK >= (NB+3)*N,
                    152: *          where NB is the blocksize for DSYTRD returned by ILAENV.
                    153: *
                    154: *          If LWORK = -1, then a workspace query is assumed; the routine
                    155: *          only calculates the optimal size of the WORK array, returns
                    156: *          this value as the first entry of the WORK array, and no error
                    157: *          message related to LWORK is issued by XERBLA.
                    158: *
                    159: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    160: *
                    161: *  IFAIL   (output) INTEGER array, dimension (N)
                    162: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    163: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    164: *          indices of the eigenvectors that failed to converge.
                    165: *          If JOBZ = 'N', then IFAIL is not referenced.
                    166: *
                    167: *  INFO    (output) INTEGER
                    168: *          = 0:  successful exit
                    169: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    170: *          > 0:  DPOTRF or DSYEVX returned an error code:
                    171: *             <= N:  if INFO = i, DSYEVX failed to converge;
                    172: *                    i eigenvectors failed to converge.  Their indices
                    173: *                    are stored in array IFAIL.
                    174: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    175: *                    minor of order i of B is not positive definite.
                    176: *                    The factorization of B could not be completed and
                    177: *                    no eigenvalues or eigenvectors were computed.
                    178: *
                    179: *  Further Details
                    180: *  ===============
                    181: *
                    182: *  Based on contributions by
                    183: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    184: *
                    185: * =====================================================================
                    186: *
                    187: *     .. Parameters ..
                    188:       DOUBLE PRECISION   ONE
                    189:       PARAMETER          ( ONE = 1.0D+0 )
                    190: *     ..
                    191: *     .. Local Scalars ..
                    192:       LOGICAL            ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
                    193:       CHARACTER          TRANS
                    194:       INTEGER            LWKMIN, LWKOPT, NB
                    195: *     ..
                    196: *     .. External Functions ..
                    197:       LOGICAL            LSAME
                    198:       INTEGER            ILAENV
                    199:       EXTERNAL           LSAME, ILAENV
                    200: *     ..
                    201: *     .. External Subroutines ..
                    202:       EXTERNAL           DPOTRF, DSYEVX, DSYGST, DTRMM, DTRSM, XERBLA
                    203: *     ..
                    204: *     .. Intrinsic Functions ..
                    205:       INTRINSIC          MAX, MIN
                    206: *     ..
                    207: *     .. Executable Statements ..
                    208: *
                    209: *     Test the input parameters.
                    210: *
                    211:       UPPER = LSAME( UPLO, 'U' )
                    212:       WANTZ = LSAME( JOBZ, 'V' )
                    213:       ALLEIG = LSAME( RANGE, 'A' )
                    214:       VALEIG = LSAME( RANGE, 'V' )
                    215:       INDEIG = LSAME( RANGE, 'I' )
                    216:       LQUERY = ( LWORK.EQ.-1 )
                    217: *
                    218:       INFO = 0
                    219:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    220:          INFO = -1
                    221:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    222:          INFO = -2
                    223:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    224:          INFO = -3
                    225:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    226:          INFO = -4
                    227:       ELSE IF( N.LT.0 ) THEN
                    228:          INFO = -5
                    229:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    230:          INFO = -7
                    231:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    232:          INFO = -9
                    233:       ELSE
                    234:          IF( VALEIG ) THEN
                    235:             IF( N.GT.0 .AND. VU.LE.VL )
                    236:      $         INFO = -11
                    237:          ELSE IF( INDEIG ) THEN
                    238:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    239:                INFO = -12
                    240:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    241:                INFO = -13
                    242:             END IF
                    243:          END IF
                    244:       END IF
                    245:       IF (INFO.EQ.0) THEN
                    246:          IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
                    247:             INFO = -18
                    248:          END IF
                    249:       END IF
                    250: *
                    251:       IF( INFO.EQ.0 ) THEN
                    252:          LWKMIN = MAX( 1, 8*N )
                    253:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
                    254:          LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
                    255:          WORK( 1 ) = LWKOPT
                    256: *
                    257:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    258:             INFO = -20
                    259:          END IF
                    260:       END IF
                    261: *
                    262:       IF( INFO.NE.0 ) THEN
                    263:          CALL XERBLA( 'DSYGVX', -INFO )
                    264:          RETURN
                    265:       ELSE IF( LQUERY ) THEN
                    266:          RETURN
                    267:       END IF
                    268: *
                    269: *     Quick return if possible
                    270: *
                    271:       M = 0
                    272:       IF( N.EQ.0 ) THEN
                    273:          RETURN
                    274:       END IF
                    275: *
                    276: *     Form a Cholesky factorization of B.
                    277: *
                    278:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
                    279:       IF( INFO.NE.0 ) THEN
                    280:          INFO = N + INFO
                    281:          RETURN
                    282:       END IF
                    283: *
                    284: *     Transform problem to standard eigenvalue problem and solve.
                    285: *
                    286:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    287:       CALL DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
                    288:      $             M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
                    289: *
                    290:       IF( WANTZ ) THEN
                    291: *
                    292: *        Backtransform eigenvectors to the original problem.
                    293: *
                    294:          IF( INFO.GT.0 )
                    295:      $      M = INFO - 1
                    296:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    297: *
                    298: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
                    299: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
                    300: *
                    301:             IF( UPPER ) THEN
                    302:                TRANS = 'N'
                    303:             ELSE
                    304:                TRANS = 'T'
                    305:             END IF
                    306: *
                    307:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
                    308:      $                  LDB, Z, LDZ )
                    309: *
                    310:          ELSE IF( ITYPE.EQ.3 ) THEN
                    311: *
                    312: *           For B*A*x=(lambda)*x;
                    313: *           backtransform eigenvectors: x = L*y or U'*y
                    314: *
                    315:             IF( UPPER ) THEN
                    316:                TRANS = 'T'
                    317:             ELSE
                    318:                TRANS = 'N'
                    319:             END IF
                    320: *
                    321:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
                    322:      $                  LDB, Z, LDZ )
                    323:          END IF
                    324:       END IF
                    325: *
                    326: *     Set WORK(1) to optimal workspace size.
                    327: *
                    328:       WORK( 1 ) = LWKOPT
                    329: *
                    330:       RETURN
                    331: *
                    332: *     End of DSYGVX
                    333: *
                    334:       END

CVSweb interface <joel.bertrand@systella.fr>