Annotation of rpl/lapack/lapack/dsygvd.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DSYGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DSYGVD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
        !            22: *                          LWORK, IWORK, LIWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IWORK( * )
        !            30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
        !            40: *> of a real generalized symmetric-definite eigenproblem, of the form
        !            41: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
        !            42: *> B are assumed to be symmetric and B is also positive definite.
        !            43: *> If eigenvectors are desired, it uses a divide and conquer algorithm.
        !            44: *>
        !            45: *> The divide and conquer algorithm makes very mild assumptions about
        !            46: *> floating point arithmetic. It will work on machines with a guard
        !            47: *> digit in add/subtract, or on those binary machines without guard
        !            48: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            49: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            50: *> without guard digits, but we know of none.
        !            51: *> \endverbatim
        !            52: *
        !            53: *  Arguments:
        !            54: *  ==========
        !            55: *
        !            56: *> \param[in] ITYPE
        !            57: *> \verbatim
        !            58: *>          ITYPE is INTEGER
        !            59: *>          Specifies the problem type to be solved:
        !            60: *>          = 1:  A*x = (lambda)*B*x
        !            61: *>          = 2:  A*B*x = (lambda)*x
        !            62: *>          = 3:  B*A*x = (lambda)*x
        !            63: *> \endverbatim
        !            64: *>
        !            65: *> \param[in] JOBZ
        !            66: *> \verbatim
        !            67: *>          JOBZ is CHARACTER*1
        !            68: *>          = 'N':  Compute eigenvalues only;
        !            69: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[in] UPLO
        !            73: *> \verbatim
        !            74: *>          UPLO is CHARACTER*1
        !            75: *>          = 'U':  Upper triangles of A and B are stored;
        !            76: *>          = 'L':  Lower triangles of A and B are stored.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] N
        !            80: *> \verbatim
        !            81: *>          N is INTEGER
        !            82: *>          The order of the matrices A and B.  N >= 0.
        !            83: *> \endverbatim
        !            84: *>
        !            85: *> \param[in,out] A
        !            86: *> \verbatim
        !            87: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
        !            88: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
        !            89: *>          leading N-by-N upper triangular part of A contains the
        !            90: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !            91: *>          the leading N-by-N lower triangular part of A contains
        !            92: *>          the lower triangular part of the matrix A.
        !            93: *>
        !            94: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            95: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
        !            96: *>          as follows:
        !            97: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
        !            98: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
        !            99: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
        !           100: *>          or the lower triangle (if UPLO='L') of A, including the
        !           101: *>          diagonal, is destroyed.
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[in] LDA
        !           105: *> \verbatim
        !           106: *>          LDA is INTEGER
        !           107: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           108: *> \endverbatim
        !           109: *>
        !           110: *> \param[in,out] B
        !           111: *> \verbatim
        !           112: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
        !           113: *>          On entry, the symmetric matrix B.  If UPLO = 'U', the
        !           114: *>          leading N-by-N upper triangular part of B contains the
        !           115: *>          upper triangular part of the matrix B.  If UPLO = 'L',
        !           116: *>          the leading N-by-N lower triangular part of B contains
        !           117: *>          the lower triangular part of the matrix B.
        !           118: *>
        !           119: *>          On exit, if INFO <= N, the part of B containing the matrix is
        !           120: *>          overwritten by the triangular factor U or L from the Cholesky
        !           121: *>          factorization B = U**T*U or B = L*L**T.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] LDB
        !           125: *> \verbatim
        !           126: *>          LDB is INTEGER
        !           127: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] W
        !           131: *> \verbatim
        !           132: *>          W is DOUBLE PRECISION array, dimension (N)
        !           133: *>          If INFO = 0, the eigenvalues in ascending order.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[out] WORK
        !           137: *> \verbatim
        !           138: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           139: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           140: *> \endverbatim
        !           141: *>
        !           142: *> \param[in] LWORK
        !           143: *> \verbatim
        !           144: *>          LWORK is INTEGER
        !           145: *>          The dimension of the array WORK.
        !           146: *>          If N <= 1,               LWORK >= 1.
        !           147: *>          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
        !           148: *>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
        !           149: *>
        !           150: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           151: *>          only calculates the optimal sizes of the WORK and IWORK
        !           152: *>          arrays, returns these values as the first entries of the WORK
        !           153: *>          and IWORK arrays, and no error message related to LWORK or
        !           154: *>          LIWORK is issued by XERBLA.
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[out] IWORK
        !           158: *> \verbatim
        !           159: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           160: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[in] LIWORK
        !           164: *> \verbatim
        !           165: *>          LIWORK is INTEGER
        !           166: *>          The dimension of the array IWORK.
        !           167: *>          If N <= 1,                LIWORK >= 1.
        !           168: *>          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
        !           169: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
        !           170: *>
        !           171: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           172: *>          routine only calculates the optimal sizes of the WORK and
        !           173: *>          IWORK arrays, returns these values as the first entries of
        !           174: *>          the WORK and IWORK arrays, and no error message related to
        !           175: *>          LWORK or LIWORK is issued by XERBLA.
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[out] INFO
        !           179: *> \verbatim
        !           180: *>          INFO is INTEGER
        !           181: *>          = 0:  successful exit
        !           182: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           183: *>          > 0:  DPOTRF or DSYEVD returned an error code:
        !           184: *>             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
        !           185: *>                    failed to converge; i off-diagonal elements of an
        !           186: *>                    intermediate tridiagonal form did not converge to
        !           187: *>                    zero;
        !           188: *>                    if INFO = i and JOBZ = 'V', then the algorithm
        !           189: *>                    failed to compute an eigenvalue while working on
        !           190: *>                    the submatrix lying in rows and columns INFO/(N+1)
        !           191: *>                    through mod(INFO,N+1);
        !           192: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
        !           193: *>                    minor of order i of B is not positive definite.
        !           194: *>                    The factorization of B could not be completed and
        !           195: *>                    no eigenvalues or eigenvectors were computed.
        !           196: *> \endverbatim
        !           197: *
        !           198: *  Authors:
        !           199: *  ========
        !           200: *
        !           201: *> \author Univ. of Tennessee 
        !           202: *> \author Univ. of California Berkeley 
        !           203: *> \author Univ. of Colorado Denver 
        !           204: *> \author NAG Ltd. 
        !           205: *
        !           206: *> \date November 2011
        !           207: *
        !           208: *> \ingroup doubleSYeigen
        !           209: *
        !           210: *> \par Further Details:
        !           211: *  =====================
        !           212: *>
        !           213: *> \verbatim
        !           214: *>
        !           215: *>  Modified so that no backsubstitution is performed if DSYEVD fails to
        !           216: *>  converge (NEIG in old code could be greater than N causing out of
        !           217: *>  bounds reference to A - reported by Ralf Meyer).  Also corrected the
        !           218: *>  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
        !           219: *> \endverbatim
        !           220: *
        !           221: *> \par Contributors:
        !           222: *  ==================
        !           223: *>
        !           224: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           225: *>
        !           226: *  =====================================================================
1.1       bertrand  227:       SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                    228:      $                   LWORK, IWORK, LIWORK, INFO )
                    229: *
1.9     ! bertrand  230: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  233: *     November 2011
1.1       bertrand  234: *
                    235: *     .. Scalar Arguments ..
                    236:       CHARACTER          JOBZ, UPLO
                    237:       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
                    238: *     ..
                    239: *     .. Array Arguments ..
                    240:       INTEGER            IWORK( * )
                    241:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
                    242: *     ..
                    243: *
                    244: *  =====================================================================
                    245: *
                    246: *     .. Parameters ..
                    247:       DOUBLE PRECISION   ONE
                    248:       PARAMETER          ( ONE = 1.0D+0 )
                    249: *     ..
                    250: *     .. Local Scalars ..
                    251:       LOGICAL            LQUERY, UPPER, WANTZ
                    252:       CHARACTER          TRANS
                    253:       INTEGER            LIOPT, LIWMIN, LOPT, LWMIN
                    254: *     ..
                    255: *     .. External Functions ..
                    256:       LOGICAL            LSAME
                    257:       EXTERNAL           LSAME
                    258: *     ..
                    259: *     .. External Subroutines ..
                    260:       EXTERNAL           DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA
                    261: *     ..
                    262: *     .. Intrinsic Functions ..
                    263:       INTRINSIC          DBLE, MAX
                    264: *     ..
                    265: *     .. Executable Statements ..
                    266: *
                    267: *     Test the input parameters.
                    268: *
                    269:       WANTZ = LSAME( JOBZ, 'V' )
                    270:       UPPER = LSAME( UPLO, 'U' )
                    271:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    272: *
                    273:       INFO = 0
                    274:       IF( N.LE.1 ) THEN
                    275:          LIWMIN = 1
                    276:          LWMIN = 1
                    277:       ELSE IF( WANTZ ) THEN
                    278:          LIWMIN = 3 + 5*N
                    279:          LWMIN = 1 + 6*N + 2*N**2
                    280:       ELSE
                    281:          LIWMIN = 1
                    282:          LWMIN = 2*N + 1
                    283:       END IF
                    284:       LOPT = LWMIN
                    285:       LIOPT = LIWMIN
                    286:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    287:          INFO = -1
                    288:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    289:          INFO = -2
                    290:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    291:          INFO = -3
                    292:       ELSE IF( N.LT.0 ) THEN
                    293:          INFO = -4
                    294:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    295:          INFO = -6
                    296:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    297:          INFO = -8
                    298:       END IF
                    299: *
                    300:       IF( INFO.EQ.0 ) THEN
                    301:          WORK( 1 ) = LOPT
                    302:          IWORK( 1 ) = LIOPT
                    303: *
                    304:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    305:             INFO = -11
                    306:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    307:             INFO = -13
                    308:          END IF
                    309:       END IF
                    310: *
                    311:       IF( INFO.NE.0 ) THEN
                    312:          CALL XERBLA( 'DSYGVD', -INFO )
                    313:          RETURN
                    314:       ELSE IF( LQUERY ) THEN
                    315:          RETURN
                    316:       END IF
                    317: *
                    318: *     Quick return if possible
                    319: *
                    320:       IF( N.EQ.0 )
                    321:      $   RETURN
                    322: *
                    323: *     Form a Cholesky factorization of B.
                    324: *
                    325:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
                    326:       IF( INFO.NE.0 ) THEN
                    327:          INFO = N + INFO
                    328:          RETURN
                    329:       END IF
                    330: *
                    331: *     Transform problem to standard eigenvalue problem and solve.
                    332: *
                    333:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    334:       CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
                    335:      $             INFO )
                    336:       LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
                    337:       LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
                    338: *
                    339:       IF( WANTZ .AND. INFO.EQ.0 ) THEN
                    340: *
                    341: *        Backtransform eigenvectors to the original problem.
                    342: *
                    343:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    344: *
                    345: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  346: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
1.1       bertrand  347: *
                    348:             IF( UPPER ) THEN
                    349:                TRANS = 'N'
                    350:             ELSE
                    351:                TRANS = 'T'
                    352:             END IF
                    353: *
                    354:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
                    355:      $                  B, LDB, A, LDA )
                    356: *
                    357:          ELSE IF( ITYPE.EQ.3 ) THEN
                    358: *
                    359: *           For B*A*x=(lambda)*x;
1.8       bertrand  360: *           backtransform eigenvectors: x = L*y or U**T*y
1.1       bertrand  361: *
                    362:             IF( UPPER ) THEN
                    363:                TRANS = 'T'
                    364:             ELSE
                    365:                TRANS = 'N'
                    366:             END IF
                    367: *
                    368:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
                    369:      $                  B, LDB, A, LDA )
                    370:          END IF
                    371:       END IF
                    372: *
                    373:       WORK( 1 ) = LOPT
                    374:       IWORK( 1 ) = LIOPT
                    375: *
                    376:       RETURN
                    377: *
                    378: *     End of DSYGVD
                    379: *
                    380:       END

CVSweb interface <joel.bertrand@systella.fr>