Annotation of rpl/lapack/lapack/dsygvd.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                      2:      $                   LWORK, IWORK, LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
                     22: *  of a real generalized symmetric-definite eigenproblem, of the form
                     23: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     24: *  B are assumed to be symmetric and B is also positive definite.
                     25: *  If eigenvectors are desired, it uses a divide and conquer algorithm.
                     26: *
                     27: *  The divide and conquer algorithm makes very mild assumptions about
                     28: *  floating point arithmetic. It will work on machines with a guard
                     29: *  digit in add/subtract, or on those binary machines without guard
                     30: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     31: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     32: *  without guard digits, but we know of none.
                     33: *
                     34: *  Arguments
                     35: *  =========
                     36: *
                     37: *  ITYPE   (input) INTEGER
                     38: *          Specifies the problem type to be solved:
                     39: *          = 1:  A*x = (lambda)*B*x
                     40: *          = 2:  A*B*x = (lambda)*x
                     41: *          = 3:  B*A*x = (lambda)*x
                     42: *
                     43: *  JOBZ    (input) CHARACTER*1
                     44: *          = 'N':  Compute eigenvalues only;
                     45: *          = 'V':  Compute eigenvalues and eigenvectors.
                     46: *
                     47: *  UPLO    (input) CHARACTER*1
                     48: *          = 'U':  Upper triangles of A and B are stored;
                     49: *          = 'L':  Lower triangles of A and B are stored.
                     50: *
                     51: *  N       (input) INTEGER
                     52: *          The order of the matrices A and B.  N >= 0.
                     53: *
                     54: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     55: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     56: *          leading N-by-N upper triangular part of A contains the
                     57: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     58: *          the leading N-by-N lower triangular part of A contains
                     59: *          the lower triangular part of the matrix A.
                     60: *
                     61: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     62: *          matrix Z of eigenvectors.  The eigenvectors are normalized
                     63: *          as follows:
                     64: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
                     65: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
                     66: *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
                     67: *          or the lower triangle (if UPLO='L') of A, including the
                     68: *          diagonal, is destroyed.
                     69: *
                     70: *  LDA     (input) INTEGER
                     71: *          The leading dimension of the array A.  LDA >= max(1,N).
                     72: *
                     73: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
                     74: *          On entry, the symmetric matrix B.  If UPLO = 'U', the
                     75: *          leading N-by-N upper triangular part of B contains the
                     76: *          upper triangular part of the matrix B.  If UPLO = 'L',
                     77: *          the leading N-by-N lower triangular part of B contains
                     78: *          the lower triangular part of the matrix B.
                     79: *
                     80: *          On exit, if INFO <= N, the part of B containing the matrix is
                     81: *          overwritten by the triangular factor U or L from the Cholesky
                     82: *          factorization B = U**T*U or B = L*L**T.
                     83: *
                     84: *  LDB     (input) INTEGER
                     85: *          The leading dimension of the array B.  LDB >= max(1,N).
                     86: *
                     87: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     88: *          If INFO = 0, the eigenvalues in ascending order.
                     89: *
                     90: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     91: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     92: *
                     93: *  LWORK   (input) INTEGER
                     94: *          The dimension of the array WORK.
                     95: *          If N <= 1,               LWORK >= 1.
                     96: *          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
                     97: *          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
                     98: *
                     99: *          If LWORK = -1, then a workspace query is assumed; the routine
                    100: *          only calculates the optimal sizes of the WORK and IWORK
                    101: *          arrays, returns these values as the first entries of the WORK
                    102: *          and IWORK arrays, and no error message related to LWORK or
                    103: *          LIWORK is issued by XERBLA.
                    104: *
                    105: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    106: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    107: *
                    108: *  LIWORK  (input) INTEGER
                    109: *          The dimension of the array IWORK.
                    110: *          If N <= 1,                LIWORK >= 1.
                    111: *          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
                    112: *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
                    113: *
                    114: *          If LIWORK = -1, then a workspace query is assumed; the
                    115: *          routine only calculates the optimal sizes of the WORK and
                    116: *          IWORK arrays, returns these values as the first entries of
                    117: *          the WORK and IWORK arrays, and no error message related to
                    118: *          LWORK or LIWORK is issued by XERBLA.
                    119: *
                    120: *  INFO    (output) INTEGER
                    121: *          = 0:  successful exit
                    122: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    123: *          > 0:  DPOTRF or DSYEVD returned an error code:
                    124: *             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
                    125: *                    failed to converge; i off-diagonal elements of an
                    126: *                    intermediate tridiagonal form did not converge to
                    127: *                    zero;
                    128: *                    if INFO = i and JOBZ = 'V', then the algorithm
                    129: *                    failed to compute an eigenvalue while working on
                    130: *                    the submatrix lying in rows and columns INFO/(N+1)
                    131: *                    through mod(INFO,N+1);
                    132: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    133: *                    minor of order i of B is not positive definite.
                    134: *                    The factorization of B could not be completed and
                    135: *                    no eigenvalues or eigenvectors were computed.
                    136: *
                    137: *  Further Details
                    138: *  ===============
                    139: *
                    140: *  Based on contributions by
                    141: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    142: *
                    143: *  Modified so that no backsubstitution is performed if DSYEVD fails to
                    144: *  converge (NEIG in old code could be greater than N causing out of
                    145: *  bounds reference to A - reported by Ralf Meyer).  Also corrected the
                    146: *  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
                    147: *  =====================================================================
                    148: *
                    149: *     .. Parameters ..
                    150:       DOUBLE PRECISION   ONE
                    151:       PARAMETER          ( ONE = 1.0D+0 )
                    152: *     ..
                    153: *     .. Local Scalars ..
                    154:       LOGICAL            LQUERY, UPPER, WANTZ
                    155:       CHARACTER          TRANS
                    156:       INTEGER            LIOPT, LIWMIN, LOPT, LWMIN
                    157: *     ..
                    158: *     .. External Functions ..
                    159:       LOGICAL            LSAME
                    160:       EXTERNAL           LSAME
                    161: *     ..
                    162: *     .. External Subroutines ..
                    163:       EXTERNAL           DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA
                    164: *     ..
                    165: *     .. Intrinsic Functions ..
                    166:       INTRINSIC          DBLE, MAX
                    167: *     ..
                    168: *     .. Executable Statements ..
                    169: *
                    170: *     Test the input parameters.
                    171: *
                    172:       WANTZ = LSAME( JOBZ, 'V' )
                    173:       UPPER = LSAME( UPLO, 'U' )
                    174:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    175: *
                    176:       INFO = 0
                    177:       IF( N.LE.1 ) THEN
                    178:          LIWMIN = 1
                    179:          LWMIN = 1
                    180:       ELSE IF( WANTZ ) THEN
                    181:          LIWMIN = 3 + 5*N
                    182:          LWMIN = 1 + 6*N + 2*N**2
                    183:       ELSE
                    184:          LIWMIN = 1
                    185:          LWMIN = 2*N + 1
                    186:       END IF
                    187:       LOPT = LWMIN
                    188:       LIOPT = LIWMIN
                    189:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    190:          INFO = -1
                    191:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    192:          INFO = -2
                    193:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    194:          INFO = -3
                    195:       ELSE IF( N.LT.0 ) THEN
                    196:          INFO = -4
                    197:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    198:          INFO = -6
                    199:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    200:          INFO = -8
                    201:       END IF
                    202: *
                    203:       IF( INFO.EQ.0 ) THEN
                    204:          WORK( 1 ) = LOPT
                    205:          IWORK( 1 ) = LIOPT
                    206: *
                    207:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    208:             INFO = -11
                    209:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    210:             INFO = -13
                    211:          END IF
                    212:       END IF
                    213: *
                    214:       IF( INFO.NE.0 ) THEN
                    215:          CALL XERBLA( 'DSYGVD', -INFO )
                    216:          RETURN
                    217:       ELSE IF( LQUERY ) THEN
                    218:          RETURN
                    219:       END IF
                    220: *
                    221: *     Quick return if possible
                    222: *
                    223:       IF( N.EQ.0 )
                    224:      $   RETURN
                    225: *
                    226: *     Form a Cholesky factorization of B.
                    227: *
                    228:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
                    229:       IF( INFO.NE.0 ) THEN
                    230:          INFO = N + INFO
                    231:          RETURN
                    232:       END IF
                    233: *
                    234: *     Transform problem to standard eigenvalue problem and solve.
                    235: *
                    236:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    237:       CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
                    238:      $             INFO )
                    239:       LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
                    240:       LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
                    241: *
                    242:       IF( WANTZ .AND. INFO.EQ.0 ) THEN
                    243: *
                    244: *        Backtransform eigenvectors to the original problem.
                    245: *
                    246:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    247: *
                    248: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
                    249: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
                    250: *
                    251:             IF( UPPER ) THEN
                    252:                TRANS = 'N'
                    253:             ELSE
                    254:                TRANS = 'T'
                    255:             END IF
                    256: *
                    257:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
                    258:      $                  B, LDB, A, LDA )
                    259: *
                    260:          ELSE IF( ITYPE.EQ.3 ) THEN
                    261: *
                    262: *           For B*A*x=(lambda)*x;
                    263: *           backtransform eigenvectors: x = L*y or U'*y
                    264: *
                    265:             IF( UPPER ) THEN
                    266:                TRANS = 'T'
                    267:             ELSE
                    268:                TRANS = 'N'
                    269:             END IF
                    270: *
                    271:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
                    272:      $                  B, LDB, A, LDA )
                    273:          END IF
                    274:       END IF
                    275: *
                    276:       WORK( 1 ) = LOPT
                    277:       IWORK( 1 ) = LIOPT
                    278: *
                    279:       RETURN
                    280: *
                    281: *     End of DSYGVD
                    282: *
                    283:       END

CVSweb interface <joel.bertrand@systella.fr>