Annotation of rpl/lapack/lapack/dsygvd.f, revision 1.11

1.9       bertrand    1: *> \brief \b DSYGST
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSYGVD + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvd.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvd.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvd.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                     22: *                          LWORK, IWORK, LIWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
                     40: *> of a real generalized symmetric-definite eigenproblem, of the form
                     41: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     42: *> B are assumed to be symmetric and B is also positive definite.
                     43: *> If eigenvectors are desired, it uses a divide and conquer algorithm.
                     44: *>
                     45: *> The divide and conquer algorithm makes very mild assumptions about
                     46: *> floating point arithmetic. It will work on machines with a guard
                     47: *> digit in add/subtract, or on those binary machines without guard
                     48: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     49: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     50: *> without guard digits, but we know of none.
                     51: *> \endverbatim
                     52: *
                     53: *  Arguments:
                     54: *  ==========
                     55: *
                     56: *> \param[in] ITYPE
                     57: *> \verbatim
                     58: *>          ITYPE is INTEGER
                     59: *>          Specifies the problem type to be solved:
                     60: *>          = 1:  A*x = (lambda)*B*x
                     61: *>          = 2:  A*B*x = (lambda)*x
                     62: *>          = 3:  B*A*x = (lambda)*x
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] JOBZ
                     66: *> \verbatim
                     67: *>          JOBZ is CHARACTER*1
                     68: *>          = 'N':  Compute eigenvalues only;
                     69: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] UPLO
                     73: *> \verbatim
                     74: *>          UPLO is CHARACTER*1
                     75: *>          = 'U':  Upper triangles of A and B are stored;
                     76: *>          = 'L':  Lower triangles of A and B are stored.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>          The order of the matrices A and B.  N >= 0.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in,out] A
                     86: *> \verbatim
                     87: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                     88: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     89: *>          leading N-by-N upper triangular part of A contains the
                     90: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     91: *>          the leading N-by-N lower triangular part of A contains
                     92: *>          the lower triangular part of the matrix A.
                     93: *>
                     94: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     95: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
                     96: *>          as follows:
                     97: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
                     98: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
                     99: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
                    100: *>          or the lower triangle (if UPLO='L') of A, including the
                    101: *>          diagonal, is destroyed.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] LDA
                    105: *> \verbatim
                    106: *>          LDA is INTEGER
                    107: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in,out] B
                    111: *> \verbatim
                    112: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
                    113: *>          On entry, the symmetric matrix B.  If UPLO = 'U', the
                    114: *>          leading N-by-N upper triangular part of B contains the
                    115: *>          upper triangular part of the matrix B.  If UPLO = 'L',
                    116: *>          the leading N-by-N lower triangular part of B contains
                    117: *>          the lower triangular part of the matrix B.
                    118: *>
                    119: *>          On exit, if INFO <= N, the part of B containing the matrix is
                    120: *>          overwritten by the triangular factor U or L from the Cholesky
                    121: *>          factorization B = U**T*U or B = L*L**T.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] LDB
                    125: *> \verbatim
                    126: *>          LDB is INTEGER
                    127: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] W
                    131: *> \verbatim
                    132: *>          W is DOUBLE PRECISION array, dimension (N)
                    133: *>          If INFO = 0, the eigenvalues in ascending order.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] WORK
                    137: *> \verbatim
                    138: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    139: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in] LWORK
                    143: *> \verbatim
                    144: *>          LWORK is INTEGER
                    145: *>          The dimension of the array WORK.
                    146: *>          If N <= 1,               LWORK >= 1.
                    147: *>          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
                    148: *>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
                    149: *>
                    150: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    151: *>          only calculates the optimal sizes of the WORK and IWORK
                    152: *>          arrays, returns these values as the first entries of the WORK
                    153: *>          and IWORK arrays, and no error message related to LWORK or
                    154: *>          LIWORK is issued by XERBLA.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] IWORK
                    158: *> \verbatim
                    159: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    160: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[in] LIWORK
                    164: *> \verbatim
                    165: *>          LIWORK is INTEGER
                    166: *>          The dimension of the array IWORK.
                    167: *>          If N <= 1,                LIWORK >= 1.
                    168: *>          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
                    169: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
                    170: *>
                    171: *>          If LIWORK = -1, then a workspace query is assumed; the
                    172: *>          routine only calculates the optimal sizes of the WORK and
                    173: *>          IWORK arrays, returns these values as the first entries of
                    174: *>          the WORK and IWORK arrays, and no error message related to
                    175: *>          LWORK or LIWORK is issued by XERBLA.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] INFO
                    179: *> \verbatim
                    180: *>          INFO is INTEGER
                    181: *>          = 0:  successful exit
                    182: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    183: *>          > 0:  DPOTRF or DSYEVD returned an error code:
                    184: *>             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
                    185: *>                    failed to converge; i off-diagonal elements of an
                    186: *>                    intermediate tridiagonal form did not converge to
                    187: *>                    zero;
                    188: *>                    if INFO = i and JOBZ = 'V', then the algorithm
                    189: *>                    failed to compute an eigenvalue while working on
                    190: *>                    the submatrix lying in rows and columns INFO/(N+1)
                    191: *>                    through mod(INFO,N+1);
                    192: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    193: *>                    minor of order i of B is not positive definite.
                    194: *>                    The factorization of B could not be completed and
                    195: *>                    no eigenvalues or eigenvectors were computed.
                    196: *> \endverbatim
                    197: *
                    198: *  Authors:
                    199: *  ========
                    200: *
                    201: *> \author Univ. of Tennessee 
                    202: *> \author Univ. of California Berkeley 
                    203: *> \author Univ. of Colorado Denver 
                    204: *> \author NAG Ltd. 
                    205: *
                    206: *> \date November 2011
                    207: *
                    208: *> \ingroup doubleSYeigen
                    209: *
                    210: *> \par Further Details:
                    211: *  =====================
                    212: *>
                    213: *> \verbatim
                    214: *>
                    215: *>  Modified so that no backsubstitution is performed if DSYEVD fails to
                    216: *>  converge (NEIG in old code could be greater than N causing out of
                    217: *>  bounds reference to A - reported by Ralf Meyer).  Also corrected the
                    218: *>  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
                    219: *> \endverbatim
                    220: *
                    221: *> \par Contributors:
                    222: *  ==================
                    223: *>
                    224: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    225: *>
                    226: *  =====================================================================
1.1       bertrand  227:       SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                    228:      $                   LWORK, IWORK, LIWORK, INFO )
                    229: *
1.9       bertrand  230: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  233: *     November 2011
1.1       bertrand  234: *
                    235: *     .. Scalar Arguments ..
                    236:       CHARACTER          JOBZ, UPLO
                    237:       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
                    238: *     ..
                    239: *     .. Array Arguments ..
                    240:       INTEGER            IWORK( * )
                    241:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
                    242: *     ..
                    243: *
                    244: *  =====================================================================
                    245: *
                    246: *     .. Parameters ..
                    247:       DOUBLE PRECISION   ONE
                    248:       PARAMETER          ( ONE = 1.0D+0 )
                    249: *     ..
                    250: *     .. Local Scalars ..
                    251:       LOGICAL            LQUERY, UPPER, WANTZ
                    252:       CHARACTER          TRANS
                    253:       INTEGER            LIOPT, LIWMIN, LOPT, LWMIN
                    254: *     ..
                    255: *     .. External Functions ..
                    256:       LOGICAL            LSAME
                    257:       EXTERNAL           LSAME
                    258: *     ..
                    259: *     .. External Subroutines ..
                    260:       EXTERNAL           DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA
                    261: *     ..
                    262: *     .. Intrinsic Functions ..
                    263:       INTRINSIC          DBLE, MAX
                    264: *     ..
                    265: *     .. Executable Statements ..
                    266: *
                    267: *     Test the input parameters.
                    268: *
                    269:       WANTZ = LSAME( JOBZ, 'V' )
                    270:       UPPER = LSAME( UPLO, 'U' )
                    271:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    272: *
                    273:       INFO = 0
                    274:       IF( N.LE.1 ) THEN
                    275:          LIWMIN = 1
                    276:          LWMIN = 1
                    277:       ELSE IF( WANTZ ) THEN
                    278:          LIWMIN = 3 + 5*N
                    279:          LWMIN = 1 + 6*N + 2*N**2
                    280:       ELSE
                    281:          LIWMIN = 1
                    282:          LWMIN = 2*N + 1
                    283:       END IF
                    284:       LOPT = LWMIN
                    285:       LIOPT = LIWMIN
                    286:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    287:          INFO = -1
                    288:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    289:          INFO = -2
                    290:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    291:          INFO = -3
                    292:       ELSE IF( N.LT.0 ) THEN
                    293:          INFO = -4
                    294:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    295:          INFO = -6
                    296:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    297:          INFO = -8
                    298:       END IF
                    299: *
                    300:       IF( INFO.EQ.0 ) THEN
                    301:          WORK( 1 ) = LOPT
                    302:          IWORK( 1 ) = LIOPT
                    303: *
                    304:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    305:             INFO = -11
                    306:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    307:             INFO = -13
                    308:          END IF
                    309:       END IF
                    310: *
                    311:       IF( INFO.NE.0 ) THEN
                    312:          CALL XERBLA( 'DSYGVD', -INFO )
                    313:          RETURN
                    314:       ELSE IF( LQUERY ) THEN
                    315:          RETURN
                    316:       END IF
                    317: *
                    318: *     Quick return if possible
                    319: *
                    320:       IF( N.EQ.0 )
                    321:      $   RETURN
                    322: *
                    323: *     Form a Cholesky factorization of B.
                    324: *
                    325:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
                    326:       IF( INFO.NE.0 ) THEN
                    327:          INFO = N + INFO
                    328:          RETURN
                    329:       END IF
                    330: *
                    331: *     Transform problem to standard eigenvalue problem and solve.
                    332: *
                    333:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    334:       CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
                    335:      $             INFO )
                    336:       LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
                    337:       LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
                    338: *
                    339:       IF( WANTZ .AND. INFO.EQ.0 ) THEN
                    340: *
                    341: *        Backtransform eigenvectors to the original problem.
                    342: *
                    343:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    344: *
                    345: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  346: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
1.1       bertrand  347: *
                    348:             IF( UPPER ) THEN
                    349:                TRANS = 'N'
                    350:             ELSE
                    351:                TRANS = 'T'
                    352:             END IF
                    353: *
                    354:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
                    355:      $                  B, LDB, A, LDA )
                    356: *
                    357:          ELSE IF( ITYPE.EQ.3 ) THEN
                    358: *
                    359: *           For B*A*x=(lambda)*x;
1.8       bertrand  360: *           backtransform eigenvectors: x = L*y or U**T*y
1.1       bertrand  361: *
                    362:             IF( UPPER ) THEN
                    363:                TRANS = 'T'
                    364:             ELSE
                    365:                TRANS = 'N'
                    366:             END IF
                    367: *
                    368:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
                    369:      $                  B, LDB, A, LDA )
                    370:          END IF
                    371:       END IF
                    372: *
                    373:       WORK( 1 ) = LOPT
                    374:       IWORK( 1 ) = LIOPT
                    375: *
                    376:       RETURN
                    377: *
                    378: *     End of DSYGVD
                    379: *
                    380:       END

CVSweb interface <joel.bertrand@systella.fr>