Annotation of rpl/lapack/lapack/dsygvd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
        !             2:      $                   LWORK, IWORK, LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
        !            22: *  of a real generalized symmetric-definite eigenproblem, of the form
        !            23: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
        !            24: *  B are assumed to be symmetric and B is also positive definite.
        !            25: *  If eigenvectors are desired, it uses a divide and conquer algorithm.
        !            26: *
        !            27: *  The divide and conquer algorithm makes very mild assumptions about
        !            28: *  floating point arithmetic. It will work on machines with a guard
        !            29: *  digit in add/subtract, or on those binary machines without guard
        !            30: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            31: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            32: *  without guard digits, but we know of none.
        !            33: *
        !            34: *  Arguments
        !            35: *  =========
        !            36: *
        !            37: *  ITYPE   (input) INTEGER
        !            38: *          Specifies the problem type to be solved:
        !            39: *          = 1:  A*x = (lambda)*B*x
        !            40: *          = 2:  A*B*x = (lambda)*x
        !            41: *          = 3:  B*A*x = (lambda)*x
        !            42: *
        !            43: *  JOBZ    (input) CHARACTER*1
        !            44: *          = 'N':  Compute eigenvalues only;
        !            45: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            46: *
        !            47: *  UPLO    (input) CHARACTER*1
        !            48: *          = 'U':  Upper triangles of A and B are stored;
        !            49: *          = 'L':  Lower triangles of A and B are stored.
        !            50: *
        !            51: *  N       (input) INTEGER
        !            52: *          The order of the matrices A and B.  N >= 0.
        !            53: *
        !            54: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !            55: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
        !            56: *          leading N-by-N upper triangular part of A contains the
        !            57: *          upper triangular part of the matrix A.  If UPLO = 'L',
        !            58: *          the leading N-by-N lower triangular part of A contains
        !            59: *          the lower triangular part of the matrix A.
        !            60: *
        !            61: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            62: *          matrix Z of eigenvectors.  The eigenvectors are normalized
        !            63: *          as follows:
        !            64: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
        !            65: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
        !            66: *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
        !            67: *          or the lower triangle (if UPLO='L') of A, including the
        !            68: *          diagonal, is destroyed.
        !            69: *
        !            70: *  LDA     (input) INTEGER
        !            71: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            72: *
        !            73: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
        !            74: *          On entry, the symmetric matrix B.  If UPLO = 'U', the
        !            75: *          leading N-by-N upper triangular part of B contains the
        !            76: *          upper triangular part of the matrix B.  If UPLO = 'L',
        !            77: *          the leading N-by-N lower triangular part of B contains
        !            78: *          the lower triangular part of the matrix B.
        !            79: *
        !            80: *          On exit, if INFO <= N, the part of B containing the matrix is
        !            81: *          overwritten by the triangular factor U or L from the Cholesky
        !            82: *          factorization B = U**T*U or B = L*L**T.
        !            83: *
        !            84: *  LDB     (input) INTEGER
        !            85: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            86: *
        !            87: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            88: *          If INFO = 0, the eigenvalues in ascending order.
        !            89: *
        !            90: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            91: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            92: *
        !            93: *  LWORK   (input) INTEGER
        !            94: *          The dimension of the array WORK.
        !            95: *          If N <= 1,               LWORK >= 1.
        !            96: *          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
        !            97: *          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
        !            98: *
        !            99: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           100: *          only calculates the optimal sizes of the WORK and IWORK
        !           101: *          arrays, returns these values as the first entries of the WORK
        !           102: *          and IWORK arrays, and no error message related to LWORK or
        !           103: *          LIWORK is issued by XERBLA.
        !           104: *
        !           105: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           106: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           107: *
        !           108: *  LIWORK  (input) INTEGER
        !           109: *          The dimension of the array IWORK.
        !           110: *          If N <= 1,                LIWORK >= 1.
        !           111: *          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
        !           112: *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
        !           113: *
        !           114: *          If LIWORK = -1, then a workspace query is assumed; the
        !           115: *          routine only calculates the optimal sizes of the WORK and
        !           116: *          IWORK arrays, returns these values as the first entries of
        !           117: *          the WORK and IWORK arrays, and no error message related to
        !           118: *          LWORK or LIWORK is issued by XERBLA.
        !           119: *
        !           120: *  INFO    (output) INTEGER
        !           121: *          = 0:  successful exit
        !           122: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           123: *          > 0:  DPOTRF or DSYEVD returned an error code:
        !           124: *             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
        !           125: *                    failed to converge; i off-diagonal elements of an
        !           126: *                    intermediate tridiagonal form did not converge to
        !           127: *                    zero;
        !           128: *                    if INFO = i and JOBZ = 'V', then the algorithm
        !           129: *                    failed to compute an eigenvalue while working on
        !           130: *                    the submatrix lying in rows and columns INFO/(N+1)
        !           131: *                    through mod(INFO,N+1);
        !           132: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
        !           133: *                    minor of order i of B is not positive definite.
        !           134: *                    The factorization of B could not be completed and
        !           135: *                    no eigenvalues or eigenvectors were computed.
        !           136: *
        !           137: *  Further Details
        !           138: *  ===============
        !           139: *
        !           140: *  Based on contributions by
        !           141: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           142: *
        !           143: *  Modified so that no backsubstitution is performed if DSYEVD fails to
        !           144: *  converge (NEIG in old code could be greater than N causing out of
        !           145: *  bounds reference to A - reported by Ralf Meyer).  Also corrected the
        !           146: *  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
        !           147: *  =====================================================================
        !           148: *
        !           149: *     .. Parameters ..
        !           150:       DOUBLE PRECISION   ONE
        !           151:       PARAMETER          ( ONE = 1.0D+0 )
        !           152: *     ..
        !           153: *     .. Local Scalars ..
        !           154:       LOGICAL            LQUERY, UPPER, WANTZ
        !           155:       CHARACTER          TRANS
        !           156:       INTEGER            LIOPT, LIWMIN, LOPT, LWMIN
        !           157: *     ..
        !           158: *     .. External Functions ..
        !           159:       LOGICAL            LSAME
        !           160:       EXTERNAL           LSAME
        !           161: *     ..
        !           162: *     .. External Subroutines ..
        !           163:       EXTERNAL           DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA
        !           164: *     ..
        !           165: *     .. Intrinsic Functions ..
        !           166:       INTRINSIC          DBLE, MAX
        !           167: *     ..
        !           168: *     .. Executable Statements ..
        !           169: *
        !           170: *     Test the input parameters.
        !           171: *
        !           172:       WANTZ = LSAME( JOBZ, 'V' )
        !           173:       UPPER = LSAME( UPLO, 'U' )
        !           174:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           175: *
        !           176:       INFO = 0
        !           177:       IF( N.LE.1 ) THEN
        !           178:          LIWMIN = 1
        !           179:          LWMIN = 1
        !           180:       ELSE IF( WANTZ ) THEN
        !           181:          LIWMIN = 3 + 5*N
        !           182:          LWMIN = 1 + 6*N + 2*N**2
        !           183:       ELSE
        !           184:          LIWMIN = 1
        !           185:          LWMIN = 2*N + 1
        !           186:       END IF
        !           187:       LOPT = LWMIN
        !           188:       LIOPT = LIWMIN
        !           189:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
        !           190:          INFO = -1
        !           191:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           192:          INFO = -2
        !           193:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           194:          INFO = -3
        !           195:       ELSE IF( N.LT.0 ) THEN
        !           196:          INFO = -4
        !           197:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           198:          INFO = -6
        !           199:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           200:          INFO = -8
        !           201:       END IF
        !           202: *
        !           203:       IF( INFO.EQ.0 ) THEN
        !           204:          WORK( 1 ) = LOPT
        !           205:          IWORK( 1 ) = LIOPT
        !           206: *
        !           207:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           208:             INFO = -11
        !           209:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           210:             INFO = -13
        !           211:          END IF
        !           212:       END IF
        !           213: *
        !           214:       IF( INFO.NE.0 ) THEN
        !           215:          CALL XERBLA( 'DSYGVD', -INFO )
        !           216:          RETURN
        !           217:       ELSE IF( LQUERY ) THEN
        !           218:          RETURN
        !           219:       END IF
        !           220: *
        !           221: *     Quick return if possible
        !           222: *
        !           223:       IF( N.EQ.0 )
        !           224:      $   RETURN
        !           225: *
        !           226: *     Form a Cholesky factorization of B.
        !           227: *
        !           228:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
        !           229:       IF( INFO.NE.0 ) THEN
        !           230:          INFO = N + INFO
        !           231:          RETURN
        !           232:       END IF
        !           233: *
        !           234: *     Transform problem to standard eigenvalue problem and solve.
        !           235: *
        !           236:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
        !           237:       CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
        !           238:      $             INFO )
        !           239:       LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
        !           240:       LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
        !           241: *
        !           242:       IF( WANTZ .AND. INFO.EQ.0 ) THEN
        !           243: *
        !           244: *        Backtransform eigenvectors to the original problem.
        !           245: *
        !           246:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
        !           247: *
        !           248: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
        !           249: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
        !           250: *
        !           251:             IF( UPPER ) THEN
        !           252:                TRANS = 'N'
        !           253:             ELSE
        !           254:                TRANS = 'T'
        !           255:             END IF
        !           256: *
        !           257:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
        !           258:      $                  B, LDB, A, LDA )
        !           259: *
        !           260:          ELSE IF( ITYPE.EQ.3 ) THEN
        !           261: *
        !           262: *           For B*A*x=(lambda)*x;
        !           263: *           backtransform eigenvectors: x = L*y or U'*y
        !           264: *
        !           265:             IF( UPPER ) THEN
        !           266:                TRANS = 'T'
        !           267:             ELSE
        !           268:                TRANS = 'N'
        !           269:             END IF
        !           270: *
        !           271:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
        !           272:      $                  B, LDB, A, LDA )
        !           273:          END IF
        !           274:       END IF
        !           275: *
        !           276:       WORK( 1 ) = LOPT
        !           277:       IWORK( 1 ) = LIOPT
        !           278: *
        !           279:       RETURN
        !           280: *
        !           281: *     End of DSYGVD
        !           282: *
        !           283:       END

CVSweb interface <joel.bertrand@systella.fr>