File:  [local] / rpl / lapack / lapack / dsygv_2stage.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:08 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DSYGV_2STAGE
    2: *
    3: *  @precisions fortran d -> s
    4: *
    5: *  =========== DOCUMENTATION ===========
    6: *
    7: * Online html documentation available at
    8: *            http://www.netlib.org/lapack/explore-html/
    9: *
   10: *> \htmlonly
   11: *> Download DSYGV_2STAGE + dependencies
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygv_2stage.f">
   13: *> [TGZ]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygv_2stage.f">
   15: *> [ZIP]</a>
   16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygv_2stage.f">
   17: *> [TXT]</a>
   18: *> \endhtmlonly
   19: *
   20: *  Definition:
   21: *  ===========
   22: *
   23: *       SUBROUTINE DSYGV_2STAGE( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W,
   24: *                                WORK, LWORK, INFO )
   25: *
   26: *       IMPLICIT NONE
   27: *
   28: *       .. Scalar Arguments ..
   29: *       CHARACTER          JOBZ, UPLO
   30: *       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DSYGV_2STAGE computes all the eigenvalues, and optionally, the eigenvectors
   43: *> of a real generalized symmetric-definite eigenproblem, of the form
   44: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
   45: *> Here A and B are assumed to be symmetric and B is also
   46: *> positive definite.
   47: *> This routine use the 2stage technique for the reduction to tridiagonal
   48: *> which showed higher performance on recent architecture and for large
   49: *> sizes N>2000.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] ITYPE
   56: *> \verbatim
   57: *>          ITYPE is INTEGER
   58: *>          Specifies the problem type to be solved:
   59: *>          = 1:  A*x = (lambda)*B*x
   60: *>          = 2:  A*B*x = (lambda)*x
   61: *>          = 3:  B*A*x = (lambda)*x
   62: *> \endverbatim
   63: *>
   64: *> \param[in] JOBZ
   65: *> \verbatim
   66: *>          JOBZ is CHARACTER*1
   67: *>          = 'N':  Compute eigenvalues only;
   68: *>          = 'V':  Compute eigenvalues and eigenvectors.
   69: *>                  Not available in this release.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] UPLO
   73: *> \verbatim
   74: *>          UPLO is CHARACTER*1
   75: *>          = 'U':  Upper triangles of A and B are stored;
   76: *>          = 'L':  Lower triangles of A and B are stored.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrices A and B.  N >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] A
   86: *> \verbatim
   87: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
   88: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
   89: *>          leading N-by-N upper triangular part of A contains the
   90: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   91: *>          the leading N-by-N lower triangular part of A contains
   92: *>          the lower triangular part of the matrix A.
   93: *>
   94: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
   95: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
   96: *>          as follows:
   97: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
   98: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
   99: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
  100: *>          or the lower triangle (if UPLO='L') of A, including the
  101: *>          diagonal, is destroyed.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] LDA
  105: *> \verbatim
  106: *>          LDA is INTEGER
  107: *>          The leading dimension of the array A.  LDA >= max(1,N).
  108: *> \endverbatim
  109: *>
  110: *> \param[in,out] B
  111: *> \verbatim
  112: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
  113: *>          On entry, the symmetric positive definite matrix B.
  114: *>          If UPLO = 'U', the leading N-by-N upper triangular part of B
  115: *>          contains the upper triangular part of the matrix B.
  116: *>          If UPLO = 'L', the leading N-by-N lower triangular part of B
  117: *>          contains the lower triangular part of the matrix B.
  118: *>
  119: *>          On exit, if INFO <= N, the part of B containing the matrix is
  120: *>          overwritten by the triangular factor U or L from the Cholesky
  121: *>          factorization B = U**T*U or B = L*L**T.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDB
  125: *> \verbatim
  126: *>          LDB is INTEGER
  127: *>          The leading dimension of the array B.  LDB >= max(1,N).
  128: *> \endverbatim
  129: *>
  130: *> \param[out] W
  131: *> \verbatim
  132: *>          W is DOUBLE PRECISION array, dimension (N)
  133: *>          If INFO = 0, the eigenvalues in ascending order.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] WORK
  137: *> \verbatim
  138: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  139: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  140: *> \endverbatim
  141: *>
  142: *> \param[in] LWORK
  143: *> \verbatim
  144: *>          LWORK is INTEGER
  145: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
  146: *>          otherwise  
  147: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
  148: *>                                   LWORK = MAX(1, dimension) where
  149: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + 2*N
  150: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
  151: *>                                               + max(2*KD*KD, KD*NTHREADS) 
  152: *>                                               + (KD+1)*N + 2*N
  153: *>                                   where KD is the blocking size of the reduction,
  154: *>                                   FACTOPTNB is the blocking used by the QR or LQ
  155: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
  156: *>                                   NTHREADS is the number of threads used when
  157: *>                                   openMP compilation is enabled, otherwise =1.
  158: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
  159: *>
  160: *>          If LWORK = -1, then a workspace query is assumed; the routine
  161: *>          only calculates the optimal size of the WORK array, returns
  162: *>          this value as the first entry of the WORK array, and no error
  163: *>          message related to LWORK is issued by XERBLA.
  164: *> \endverbatim
  165: *>
  166: *> \param[out] INFO
  167: *> \verbatim
  168: *>          INFO is INTEGER
  169: *>          = 0:  successful exit
  170: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  171: *>          > 0:  DPOTRF or DSYEV returned an error code:
  172: *>             <= N:  if INFO = i, DSYEV failed to converge;
  173: *>                    i off-diagonal elements of an intermediate
  174: *>                    tridiagonal form did not converge to zero;
  175: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
  176: *>                    minor of order i of B is not positive definite.
  177: *>                    The factorization of B could not be completed and
  178: *>                    no eigenvalues or eigenvectors were computed.
  179: *> \endverbatim
  180: *
  181: *  Authors:
  182: *  ========
  183: *
  184: *> \author Univ. of Tennessee
  185: *> \author Univ. of California Berkeley
  186: *> \author Univ. of Colorado Denver
  187: *> \author NAG Ltd.
  188: *
  189: *> \date November 2017
  190: *
  191: *> \ingroup doubleSYeigen
  192: *
  193: *> \par Further Details:
  194: *  =====================
  195: *>
  196: *> \verbatim
  197: *>
  198: *>  All details about the 2stage techniques are available in:
  199: *>
  200: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  201: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
  202: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
  203: *>  of 2011 International Conference for High Performance Computing,
  204: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  205: *>  Article 8 , 11 pages.
  206: *>  http://doi.acm.org/10.1145/2063384.2063394
  207: *>
  208: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  209: *>  An improved parallel singular value algorithm and its implementation 
  210: *>  for multicore hardware, In Proceedings of 2013 International Conference
  211: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  212: *>  Denver, Colorado, USA, 2013.
  213: *>  Article 90, 12 pages.
  214: *>  http://doi.acm.org/10.1145/2503210.2503292
  215: *>
  216: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  217: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  218: *>  calculations based on fine-grained memory aware tasks.
  219: *>  International Journal of High Performance Computing Applications.
  220: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
  221: *>  http://hpc.sagepub.com/content/28/2/196 
  222: *>
  223: *> \endverbatim
  224: *
  225: *  =====================================================================
  226:       SUBROUTINE DSYGV_2STAGE( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W,
  227:      $                         WORK, LWORK, INFO )
  228: *
  229:       IMPLICIT NONE
  230: *
  231: *  -- LAPACK driver routine (version 3.8.0) --
  232: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  233: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  234: *     November 2017
  235: *
  236: *     .. Scalar Arguments ..
  237:       CHARACTER          JOBZ, UPLO
  238:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
  239: *     ..
  240: *     .. Array Arguments ..
  241:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
  242: *     ..
  243: *
  244: *  =====================================================================
  245: *
  246: *     .. Parameters ..
  247:       DOUBLE PRECISION   ONE
  248:       PARAMETER          ( ONE = 1.0D+0 )
  249: *     ..
  250: *     .. Local Scalars ..
  251:       LOGICAL            LQUERY, UPPER, WANTZ
  252:       CHARACTER          TRANS
  253:       INTEGER            NEIG, LWMIN, LHTRD, LWTRD, KD, IB 
  254: *     ..
  255: *     .. External Functions ..
  256:       LOGICAL            LSAME
  257:       INTEGER            ILAENV2STAGE
  258:       EXTERNAL           LSAME, ILAENV2STAGE
  259: *     ..
  260: *     .. External Subroutines ..
  261:       EXTERNAL           DPOTRF, DSYGST, DTRMM, DTRSM, XERBLA,
  262:      $                   DSYEV_2STAGE
  263: *     ..
  264: *     .. Intrinsic Functions ..
  265:       INTRINSIC          MAX
  266: *     ..
  267: *     .. Executable Statements ..
  268: *
  269: *     Test the input parameters.
  270: *
  271:       WANTZ = LSAME( JOBZ, 'V' )
  272:       UPPER = LSAME( UPLO, 'U' )
  273:       LQUERY = ( LWORK.EQ.-1 )
  274: *
  275:       INFO = 0
  276:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  277:          INFO = -1
  278:       ELSE IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
  279:          INFO = -2
  280:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  281:          INFO = -3
  282:       ELSE IF( N.LT.0 ) THEN
  283:          INFO = -4
  284:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  285:          INFO = -6
  286:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  287:          INFO = -8
  288:       END IF
  289: *
  290:       IF( INFO.EQ.0 ) THEN
  291:          KD    = ILAENV2STAGE( 1, 'DSYTRD_2STAGE', JOBZ, N, -1, -1, -1 )
  292:          IB    = ILAENV2STAGE( 2, 'DSYTRD_2STAGE', JOBZ, N, KD, -1, -1 )
  293:          LHTRD = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
  294:          LWTRD = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
  295:          LWMIN = 2*N + LHTRD + LWTRD
  296:          WORK( 1 )  = LWMIN
  297: *
  298:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  299:             INFO = -11
  300:          END IF
  301:       END IF
  302: *
  303:       IF( INFO.NE.0 ) THEN
  304:          CALL XERBLA( 'DSYGV_2STAGE ', -INFO )
  305:          RETURN
  306:       ELSE IF( LQUERY ) THEN
  307:          RETURN
  308:       END IF
  309: *
  310: *     Quick return if possible
  311: *
  312:       IF( N.EQ.0 )
  313:      $   RETURN
  314: *
  315: *     Form a Cholesky factorization of B.
  316: *
  317:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
  318:       IF( INFO.NE.0 ) THEN
  319:          INFO = N + INFO
  320:          RETURN
  321:       END IF
  322: *
  323: *     Transform problem to standard eigenvalue problem and solve.
  324: *
  325:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  326:       CALL DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
  327: *
  328:       IF( WANTZ ) THEN
  329: *
  330: *        Backtransform eigenvectors to the original problem.
  331: *
  332:          NEIG = N
  333:          IF( INFO.GT.0 )
  334:      $      NEIG = INFO - 1
  335:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  336: *
  337: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  338: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  339: *
  340:             IF( UPPER ) THEN
  341:                TRANS = 'N'
  342:             ELSE
  343:                TRANS = 'T'
  344:             END IF
  345: *
  346:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
  347:      $                  B, LDB, A, LDA )
  348: *
  349:          ELSE IF( ITYPE.EQ.3 ) THEN
  350: *
  351: *           For B*A*x=(lambda)*x;
  352: *           backtransform eigenvectors: x = L*y or U**T*y
  353: *
  354:             IF( UPPER ) THEN
  355:                TRANS = 'T'
  356:             ELSE
  357:                TRANS = 'N'
  358:             END IF
  359: *
  360:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
  361:      $                  B, LDB, A, LDA )
  362:          END IF
  363:       END IF
  364: *
  365:       WORK( 1 ) = LWMIN
  366:       RETURN
  367: *
  368: *     End of DSYGV_2STAGE
  369: *
  370:       END

CVSweb interface <joel.bertrand@systella.fr>