Annotation of rpl/lapack/lapack/dsygv_2stage.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b DSYGV_2STAGE
        !             2: *
        !             3: *  @precisions fortran d -> s
        !             4: *
        !             5: *  =========== DOCUMENTATION ===========
        !             6: *
        !             7: * Online html documentation available at
        !             8: *            http://www.netlib.org/lapack/explore-html/
        !             9: *
        !            10: *> \htmlonly
        !            11: *> Download DSYGV_2STAGE + dependencies
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygv_2stage.f">
        !            13: *> [TGZ]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygv_2stage.f">
        !            15: *> [ZIP]</a>
        !            16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygv_2stage.f">
        !            17: *> [TXT]</a>
        !            18: *> \endhtmlonly
        !            19: *
        !            20: *  Definition:
        !            21: *  ===========
        !            22: *
        !            23: *       SUBROUTINE DSYGV_2STAGE( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W,
        !            24: *                                WORK, LWORK, INFO )
        !            25: *
        !            26: *       IMPLICIT NONE
        !            27: *
        !            28: *       .. Scalar Arguments ..
        !            29: *       CHARACTER          JOBZ, UPLO
        !            30: *       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
        !            31: *       ..
        !            32: *       .. Array Arguments ..
        !            33: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
        !            34: *       ..
        !            35: *
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> DSYGV_2STAGE computes all the eigenvalues, and optionally, the eigenvectors
        !            43: *> of a real generalized symmetric-definite eigenproblem, of the form
        !            44: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
        !            45: *> Here A and B are assumed to be symmetric and B is also
        !            46: *> positive definite.
        !            47: *> This routine use the 2stage technique for the reduction to tridiagonal
        !            48: *> which showed higher performance on recent architecture and for large
        !            49: *  sizes N>2000.
        !            50: *> \endverbatim
        !            51: *
        !            52: *  Arguments:
        !            53: *  ==========
        !            54: *
        !            55: *> \param[in] ITYPE
        !            56: *> \verbatim
        !            57: *>          ITYPE is INTEGER
        !            58: *>          Specifies the problem type to be solved:
        !            59: *>          = 1:  A*x = (lambda)*B*x
        !            60: *>          = 2:  A*B*x = (lambda)*x
        !            61: *>          = 3:  B*A*x = (lambda)*x
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] JOBZ
        !            65: *> \verbatim
        !            66: *>          JOBZ is CHARACTER*1
        !            67: *>          = 'N':  Compute eigenvalues only;
        !            68: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            69: *>                  Not available in this release.
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[in] UPLO
        !            73: *> \verbatim
        !            74: *>          UPLO is CHARACTER*1
        !            75: *>          = 'U':  Upper triangles of A and B are stored;
        !            76: *>          = 'L':  Lower triangles of A and B are stored.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] N
        !            80: *> \verbatim
        !            81: *>          N is INTEGER
        !            82: *>          The order of the matrices A and B.  N >= 0.
        !            83: *> \endverbatim
        !            84: *>
        !            85: *> \param[in,out] A
        !            86: *> \verbatim
        !            87: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
        !            88: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
        !            89: *>          leading N-by-N upper triangular part of A contains the
        !            90: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !            91: *>          the leading N-by-N lower triangular part of A contains
        !            92: *>          the lower triangular part of the matrix A.
        !            93: *>
        !            94: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            95: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
        !            96: *>          as follows:
        !            97: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
        !            98: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
        !            99: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
        !           100: *>          or the lower triangle (if UPLO='L') of A, including the
        !           101: *>          diagonal, is destroyed.
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[in] LDA
        !           105: *> \verbatim
        !           106: *>          LDA is INTEGER
        !           107: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           108: *> \endverbatim
        !           109: *>
        !           110: *> \param[in,out] B
        !           111: *> \verbatim
        !           112: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
        !           113: *>          On entry, the symmetric positive definite matrix B.
        !           114: *>          If UPLO = 'U', the leading N-by-N upper triangular part of B
        !           115: *>          contains the upper triangular part of the matrix B.
        !           116: *>          If UPLO = 'L', the leading N-by-N lower triangular part of B
        !           117: *>          contains the lower triangular part of the matrix B.
        !           118: *>
        !           119: *>          On exit, if INFO <= N, the part of B containing the matrix is
        !           120: *>          overwritten by the triangular factor U or L from the Cholesky
        !           121: *>          factorization B = U**T*U or B = L*L**T.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] LDB
        !           125: *> \verbatim
        !           126: *>          LDB is INTEGER
        !           127: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] W
        !           131: *> \verbatim
        !           132: *>          W is DOUBLE PRECISION array, dimension (N)
        !           133: *>          If INFO = 0, the eigenvalues in ascending order.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[out] WORK
        !           137: *> \verbatim
        !           138: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           139: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           140: *> \endverbatim
        !           141: *>
        !           142: *> \param[in] LWORK
        !           143: *> \verbatim
        !           144: *>          LWORK is INTEGER
        !           145: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
        !           146: *>          otherwise  
        !           147: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
        !           148: *>                                   LWORK = MAX(1, dimension) where
        !           149: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + 2*N
        !           150: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
        !           151: *>                                               + max(2*KD*KD, KD*NTHREADS) 
        !           152: *>                                               + (KD+1)*N + 2*N
        !           153: *>                                   where KD is the blocking size of the reduction,
        !           154: *>                                   FACTOPTNB is the blocking used by the QR or LQ
        !           155: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
        !           156: *>                                   NTHREADS is the number of threads used when
        !           157: *>                                   openMP compilation is enabled, otherwise =1.
        !           158: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
        !           159: *>
        !           160: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           161: *>          only calculates the optimal size of the WORK array, returns
        !           162: *>          this value as the first entry of the WORK array, and no error
        !           163: *>          message related to LWORK is issued by XERBLA.
        !           164: *> \endverbatim
        !           165: *>
        !           166: *> \param[out] INFO
        !           167: *> \verbatim
        !           168: *>          INFO is INTEGER
        !           169: *>          = 0:  successful exit
        !           170: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           171: *>          > 0:  DPOTRF or DSYEV returned an error code:
        !           172: *>             <= N:  if INFO = i, DSYEV failed to converge;
        !           173: *>                    i off-diagonal elements of an intermediate
        !           174: *>                    tridiagonal form did not converge to zero;
        !           175: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
        !           176: *>                    minor of order i of B is not positive definite.
        !           177: *>                    The factorization of B could not be completed and
        !           178: *>                    no eigenvalues or eigenvectors were computed.
        !           179: *> \endverbatim
        !           180: *
        !           181: *  Authors:
        !           182: *  ========
        !           183: *
        !           184: *> \author Univ. of Tennessee
        !           185: *> \author Univ. of California Berkeley
        !           186: *> \author Univ. of Colorado Denver
        !           187: *> \author NAG Ltd.
        !           188: *
        !           189: *> \date December 2016
        !           190: *
        !           191: *> \ingroup doubleSYeigen
        !           192: *
        !           193: *> \par Further Details:
        !           194: *  =====================
        !           195: *>
        !           196: *> \verbatim
        !           197: *>
        !           198: *>  All details about the 2stage techniques are available in:
        !           199: *>
        !           200: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
        !           201: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
        !           202: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
        !           203: *>  of 2011 International Conference for High Performance Computing,
        !           204: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
        !           205: *>  Article 8 , 11 pages.
        !           206: *>  http://doi.acm.org/10.1145/2063384.2063394
        !           207: *>
        !           208: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
        !           209: *>  An improved parallel singular value algorithm and its implementation 
        !           210: *>  for multicore hardware, In Proceedings of 2013 International Conference
        !           211: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
        !           212: *>  Denver, Colorado, USA, 2013.
        !           213: *>  Article 90, 12 pages.
        !           214: *>  http://doi.acm.org/10.1145/2503210.2503292
        !           215: *>
        !           216: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
        !           217: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
        !           218: *>  calculations based on fine-grained memory aware tasks.
        !           219: *>  International Journal of High Performance Computing Applications.
        !           220: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
        !           221: *>  http://hpc.sagepub.com/content/28/2/196 
        !           222: *>
        !           223: *> \endverbatim
        !           224: *
        !           225: *  =====================================================================
        !           226:       SUBROUTINE DSYGV_2STAGE( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W,
        !           227:      $                         WORK, LWORK, INFO )
        !           228: *
        !           229:       IMPLICIT NONE
        !           230: *
        !           231: *  -- LAPACK driver routine (version 3.7.0) --
        !           232: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           233: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           234: *     December 2016
        !           235: *
        !           236: *     .. Scalar Arguments ..
        !           237:       CHARACTER          JOBZ, UPLO
        !           238:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
        !           239: *     ..
        !           240: *     .. Array Arguments ..
        !           241:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
        !           242: *     ..
        !           243: *
        !           244: *  =====================================================================
        !           245: *
        !           246: *     .. Parameters ..
        !           247:       DOUBLE PRECISION   ONE
        !           248:       PARAMETER          ( ONE = 1.0D+0 )
        !           249: *     ..
        !           250: *     .. Local Scalars ..
        !           251:       LOGICAL            LQUERY, UPPER, WANTZ
        !           252:       CHARACTER          TRANS
        !           253:       INTEGER            NEIG, LWMIN, LHTRD, LWTRD, KD, IB 
        !           254: *     ..
        !           255: *     .. External Functions ..
        !           256:       LOGICAL            LSAME
        !           257:       INTEGER            ILAENV
        !           258:       EXTERNAL           LSAME, ILAENV
        !           259: *     ..
        !           260: *     .. External Subroutines ..
        !           261:       EXTERNAL           DPOTRF, DSYGST, DTRMM, DTRSM, XERBLA,
        !           262:      $                   DSYEV_2STAGE
        !           263: *     ..
        !           264: *     .. Intrinsic Functions ..
        !           265:       INTRINSIC          MAX
        !           266: *     ..
        !           267: *     .. Executable Statements ..
        !           268: *
        !           269: *     Test the input parameters.
        !           270: *
        !           271:       WANTZ = LSAME( JOBZ, 'V' )
        !           272:       UPPER = LSAME( UPLO, 'U' )
        !           273:       LQUERY = ( LWORK.EQ.-1 )
        !           274: *
        !           275:       INFO = 0
        !           276:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
        !           277:          INFO = -1
        !           278:       ELSE IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
        !           279:          INFO = -2
        !           280:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           281:          INFO = -3
        !           282:       ELSE IF( N.LT.0 ) THEN
        !           283:          INFO = -4
        !           284:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           285:          INFO = -6
        !           286:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           287:          INFO = -8
        !           288:       END IF
        !           289: *
        !           290:       IF( INFO.EQ.0 ) THEN
        !           291:          KD    = ILAENV( 17, 'DSYTRD_2STAGE', JOBZ, N, -1, -1, -1 )
        !           292:          IB    = ILAENV( 18, 'DSYTRD_2STAGE', JOBZ, N, KD, -1, -1 )
        !           293:          LHTRD = ILAENV( 19, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
        !           294:          LWTRD = ILAENV( 20, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
        !           295:          LWMIN = 2*N + LHTRD + LWTRD
        !           296:          WORK( 1 )  = LWMIN
        !           297: *
        !           298:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           299:             INFO = -11
        !           300:          END IF
        !           301:       END IF
        !           302: *
        !           303:       IF( INFO.NE.0 ) THEN
        !           304:          CALL XERBLA( 'DSYGV_2STAGE ', -INFO )
        !           305:          RETURN
        !           306:       ELSE IF( LQUERY ) THEN
        !           307:          RETURN
        !           308:       END IF
        !           309: *
        !           310: *     Quick return if possible
        !           311: *
        !           312:       IF( N.EQ.0 )
        !           313:      $   RETURN
        !           314: *
        !           315: *     Form a Cholesky factorization of B.
        !           316: *
        !           317:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
        !           318:       IF( INFO.NE.0 ) THEN
        !           319:          INFO = N + INFO
        !           320:          RETURN
        !           321:       END IF
        !           322: *
        !           323: *     Transform problem to standard eigenvalue problem and solve.
        !           324: *
        !           325:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
        !           326:       CALL DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
        !           327: *
        !           328:       IF( WANTZ ) THEN
        !           329: *
        !           330: *        Backtransform eigenvectors to the original problem.
        !           331: *
        !           332:          NEIG = N
        !           333:          IF( INFO.GT.0 )
        !           334:      $      NEIG = INFO - 1
        !           335:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
        !           336: *
        !           337: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
        !           338: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
        !           339: *
        !           340:             IF( UPPER ) THEN
        !           341:                TRANS = 'N'
        !           342:             ELSE
        !           343:                TRANS = 'T'
        !           344:             END IF
        !           345: *
        !           346:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
        !           347:      $                  B, LDB, A, LDA )
        !           348: *
        !           349:          ELSE IF( ITYPE.EQ.3 ) THEN
        !           350: *
        !           351: *           For B*A*x=(lambda)*x;
        !           352: *           backtransform eigenvectors: x = L*y or U**T*y
        !           353: *
        !           354:             IF( UPPER ) THEN
        !           355:                TRANS = 'T'
        !           356:             ELSE
        !           357:                TRANS = 'N'
        !           358:             END IF
        !           359: *
        !           360:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
        !           361:      $                  B, LDB, A, LDA )
        !           362:          END IF
        !           363:       END IF
        !           364: *
        !           365:       WORK( 1 ) = LWMIN
        !           366:       RETURN
        !           367: *
        !           368: *     End of DSYGV_2STAGE
        !           369: *
        !           370:       END

CVSweb interface <joel.bertrand@systella.fr>