File:  [local] / rpl / lapack / lapack / dsygv.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:08 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYGV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYGV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
   22: *                         LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBZ, UPLO
   26: *       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYGV computes all the eigenvalues, and optionally, the eigenvectors
   39: *> of a real generalized symmetric-definite eigenproblem, of the form
   40: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
   41: *> Here A and B are assumed to be symmetric and B is also
   42: *> positive definite.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] ITYPE
   49: *> \verbatim
   50: *>          ITYPE is INTEGER
   51: *>          Specifies the problem type to be solved:
   52: *>          = 1:  A*x = (lambda)*B*x
   53: *>          = 2:  A*B*x = (lambda)*x
   54: *>          = 3:  B*A*x = (lambda)*x
   55: *> \endverbatim
   56: *>
   57: *> \param[in] JOBZ
   58: *> \verbatim
   59: *>          JOBZ is CHARACTER*1
   60: *>          = 'N':  Compute eigenvalues only;
   61: *>          = 'V':  Compute eigenvalues and eigenvectors.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] UPLO
   65: *> \verbatim
   66: *>          UPLO is CHARACTER*1
   67: *>          = 'U':  Upper triangles of A and B are stored;
   68: *>          = 'L':  Lower triangles of A and B are stored.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] N
   72: *> \verbatim
   73: *>          N is INTEGER
   74: *>          The order of the matrices A and B.  N >= 0.
   75: *> \endverbatim
   76: *>
   77: *> \param[in,out] A
   78: *> \verbatim
   79: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
   80: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
   81: *>          leading N-by-N upper triangular part of A contains the
   82: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   83: *>          the leading N-by-N lower triangular part of A contains
   84: *>          the lower triangular part of the matrix A.
   85: *>
   86: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
   87: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
   88: *>          as follows:
   89: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
   90: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
   91: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
   92: *>          or the lower triangle (if UPLO='L') of A, including the
   93: *>          diagonal, is destroyed.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDA
   97: *> \verbatim
   98: *>          LDA is INTEGER
   99: *>          The leading dimension of the array A.  LDA >= max(1,N).
  100: *> \endverbatim
  101: *>
  102: *> \param[in,out] B
  103: *> \verbatim
  104: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
  105: *>          On entry, the symmetric positive definite matrix B.
  106: *>          If UPLO = 'U', the leading N-by-N upper triangular part of B
  107: *>          contains the upper triangular part of the matrix B.
  108: *>          If UPLO = 'L', the leading N-by-N lower triangular part of B
  109: *>          contains the lower triangular part of the matrix B.
  110: *>
  111: *>          On exit, if INFO <= N, the part of B containing the matrix is
  112: *>          overwritten by the triangular factor U or L from the Cholesky
  113: *>          factorization B = U**T*U or B = L*L**T.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDB
  117: *> \verbatim
  118: *>          LDB is INTEGER
  119: *>          The leading dimension of the array B.  LDB >= max(1,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] W
  123: *> \verbatim
  124: *>          W is DOUBLE PRECISION array, dimension (N)
  125: *>          If INFO = 0, the eigenvalues in ascending order.
  126: *> \endverbatim
  127: *>
  128: *> \param[out] WORK
  129: *> \verbatim
  130: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  131: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LWORK
  135: *> \verbatim
  136: *>          LWORK is INTEGER
  137: *>          The length of the array WORK.  LWORK >= max(1,3*N-1).
  138: *>          For optimal efficiency, LWORK >= (NB+2)*N,
  139: *>          where NB is the blocksize for DSYTRD returned by ILAENV.
  140: *>
  141: *>          If LWORK = -1, then a workspace query is assumed; the routine
  142: *>          only calculates the optimal size of the WORK array, returns
  143: *>          this value as the first entry of the WORK array, and no error
  144: *>          message related to LWORK is issued by XERBLA.
  145: *> \endverbatim
  146: *>
  147: *> \param[out] INFO
  148: *> \verbatim
  149: *>          INFO is INTEGER
  150: *>          = 0:  successful exit
  151: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  152: *>          > 0:  DPOTRF or DSYEV returned an error code:
  153: *>             <= N:  if INFO = i, DSYEV failed to converge;
  154: *>                    i off-diagonal elements of an intermediate
  155: *>                    tridiagonal form did not converge to zero;
  156: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
  157: *>                    minor of order i of B is not positive definite.
  158: *>                    The factorization of B could not be completed and
  159: *>                    no eigenvalues or eigenvectors were computed.
  160: *> \endverbatim
  161: *
  162: *  Authors:
  163: *  ========
  164: *
  165: *> \author Univ. of Tennessee
  166: *> \author Univ. of California Berkeley
  167: *> \author Univ. of Colorado Denver
  168: *> \author NAG Ltd.
  169: *
  170: *> \ingroup doubleSYeigen
  171: *
  172: *  =====================================================================
  173:       SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
  174:      $                  LWORK, INFO )
  175: *
  176: *  -- LAPACK driver routine --
  177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  179: *
  180: *     .. Scalar Arguments ..
  181:       CHARACTER          JOBZ, UPLO
  182:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
  183: *     ..
  184: *     .. Array Arguments ..
  185:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
  186: *     ..
  187: *
  188: *  =====================================================================
  189: *
  190: *     .. Parameters ..
  191:       DOUBLE PRECISION   ONE
  192:       PARAMETER          ( ONE = 1.0D+0 )
  193: *     ..
  194: *     .. Local Scalars ..
  195:       LOGICAL            LQUERY, UPPER, WANTZ
  196:       CHARACTER          TRANS
  197:       INTEGER            LWKMIN, LWKOPT, NB, NEIG
  198: *     ..
  199: *     .. External Functions ..
  200:       LOGICAL            LSAME
  201:       INTEGER            ILAENV
  202:       EXTERNAL           LSAME, ILAENV
  203: *     ..
  204: *     .. External Subroutines ..
  205:       EXTERNAL           DPOTRF, DSYEV, DSYGST, DTRMM, DTRSM, XERBLA
  206: *     ..
  207: *     .. Intrinsic Functions ..
  208:       INTRINSIC          MAX
  209: *     ..
  210: *     .. Executable Statements ..
  211: *
  212: *     Test the input parameters.
  213: *
  214:       WANTZ = LSAME( JOBZ, 'V' )
  215:       UPPER = LSAME( UPLO, 'U' )
  216:       LQUERY = ( LWORK.EQ.-1 )
  217: *
  218:       INFO = 0
  219:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  220:          INFO = -1
  221:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  222:          INFO = -2
  223:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  224:          INFO = -3
  225:       ELSE IF( N.LT.0 ) THEN
  226:          INFO = -4
  227:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  228:          INFO = -6
  229:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  230:          INFO = -8
  231:       END IF
  232: *
  233:       IF( INFO.EQ.0 ) THEN
  234:          LWKMIN = MAX( 1, 3*N - 1 )
  235:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
  236:          LWKOPT = MAX( LWKMIN, ( NB + 2 )*N )
  237:          WORK( 1 ) = LWKOPT
  238: *
  239:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  240:             INFO = -11
  241:          END IF
  242:       END IF
  243: *
  244:       IF( INFO.NE.0 ) THEN
  245:          CALL XERBLA( 'DSYGV ', -INFO )
  246:          RETURN
  247:       ELSE IF( LQUERY ) THEN
  248:          RETURN
  249:       END IF
  250: *
  251: *     Quick return if possible
  252: *
  253:       IF( N.EQ.0 )
  254:      $   RETURN
  255: *
  256: *     Form a Cholesky factorization of B.
  257: *
  258:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
  259:       IF( INFO.NE.0 ) THEN
  260:          INFO = N + INFO
  261:          RETURN
  262:       END IF
  263: *
  264: *     Transform problem to standard eigenvalue problem and solve.
  265: *
  266:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  267:       CALL DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
  268: *
  269:       IF( WANTZ ) THEN
  270: *
  271: *        Backtransform eigenvectors to the original problem.
  272: *
  273:          NEIG = N
  274:          IF( INFO.GT.0 )
  275:      $      NEIG = INFO - 1
  276:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  277: *
  278: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  279: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  280: *
  281:             IF( UPPER ) THEN
  282:                TRANS = 'N'
  283:             ELSE
  284:                TRANS = 'T'
  285:             END IF
  286: *
  287:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
  288:      $                  B, LDB, A, LDA )
  289: *
  290:          ELSE IF( ITYPE.EQ.3 ) THEN
  291: *
  292: *           For B*A*x=(lambda)*x;
  293: *           backtransform eigenvectors: x = L*y or U**T*y
  294: *
  295:             IF( UPPER ) THEN
  296:                TRANS = 'T'
  297:             ELSE
  298:                TRANS = 'N'
  299:             END IF
  300: *
  301:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
  302:      $                  B, LDB, A, LDA )
  303:          END IF
  304:       END IF
  305: *
  306:       WORK( 1 ) = LWKOPT
  307:       RETURN
  308: *
  309: *     End of DSYGV
  310: *
  311:       END

CVSweb interface <joel.bertrand@systella.fr>