File:  [local] / rpl / lapack / lapack / dsygv.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:11 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
    2:      $                  LWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.3.1) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *  -- April 2011                                                      --
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOBZ, UPLO
   11:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DSYGV computes all the eigenvalues, and optionally, the eigenvectors
   21: *  of a real generalized symmetric-definite eigenproblem, of the form
   22: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
   23: *  Here A and B are assumed to be symmetric and B is also
   24: *  positive definite.
   25: *
   26: *  Arguments
   27: *  =========
   28: *
   29: *  ITYPE   (input) INTEGER
   30: *          Specifies the problem type to be solved:
   31: *          = 1:  A*x = (lambda)*B*x
   32: *          = 2:  A*B*x = (lambda)*x
   33: *          = 3:  B*A*x = (lambda)*x
   34: *
   35: *  JOBZ    (input) CHARACTER*1
   36: *          = 'N':  Compute eigenvalues only;
   37: *          = 'V':  Compute eigenvalues and eigenvectors.
   38: *
   39: *  UPLO    (input) CHARACTER*1
   40: *          = 'U':  Upper triangles of A and B are stored;
   41: *          = 'L':  Lower triangles of A and B are stored.
   42: *
   43: *  N       (input) INTEGER
   44: *          The order of the matrices A and B.  N >= 0.
   45: *
   46: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
   47: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
   48: *          leading N-by-N upper triangular part of A contains the
   49: *          upper triangular part of the matrix A.  If UPLO = 'L',
   50: *          the leading N-by-N lower triangular part of A contains
   51: *          the lower triangular part of the matrix A.
   52: *
   53: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
   54: *          matrix Z of eigenvectors.  The eigenvectors are normalized
   55: *          as follows:
   56: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
   57: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
   58: *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
   59: *          or the lower triangle (if UPLO='L') of A, including the
   60: *          diagonal, is destroyed.
   61: *
   62: *  LDA     (input) INTEGER
   63: *          The leading dimension of the array A.  LDA >= max(1,N).
   64: *
   65: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
   66: *          On entry, the symmetric positive definite matrix B.
   67: *          If UPLO = 'U', the leading N-by-N upper triangular part of B
   68: *          contains the upper triangular part of the matrix B.
   69: *          If UPLO = 'L', the leading N-by-N lower triangular part of B
   70: *          contains the lower triangular part of the matrix B.
   71: *
   72: *          On exit, if INFO <= N, the part of B containing the matrix is
   73: *          overwritten by the triangular factor U or L from the Cholesky
   74: *          factorization B = U**T*U or B = L*L**T.
   75: *
   76: *  LDB     (input) INTEGER
   77: *          The leading dimension of the array B.  LDB >= max(1,N).
   78: *
   79: *  W       (output) DOUBLE PRECISION array, dimension (N)
   80: *          If INFO = 0, the eigenvalues in ascending order.
   81: *
   82: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   83: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   84: *
   85: *  LWORK   (input) INTEGER
   86: *          The length of the array WORK.  LWORK >= max(1,3*N-1).
   87: *          For optimal efficiency, LWORK >= (NB+2)*N,
   88: *          where NB is the blocksize for DSYTRD returned by ILAENV.
   89: *
   90: *          If LWORK = -1, then a workspace query is assumed; the routine
   91: *          only calculates the optimal size of the WORK array, returns
   92: *          this value as the first entry of the WORK array, and no error
   93: *          message related to LWORK is issued by XERBLA.
   94: *
   95: *  INFO    (output) INTEGER
   96: *          = 0:  successful exit
   97: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   98: *          > 0:  DPOTRF or DSYEV returned an error code:
   99: *             <= N:  if INFO = i, DSYEV failed to converge;
  100: *                    i off-diagonal elements of an intermediate
  101: *                    tridiagonal form did not converge to zero;
  102: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
  103: *                    minor of order i of B is not positive definite.
  104: *                    The factorization of B could not be completed and
  105: *                    no eigenvalues or eigenvectors were computed.
  106: *
  107: *  =====================================================================
  108: *
  109: *     .. Parameters ..
  110:       DOUBLE PRECISION   ONE
  111:       PARAMETER          ( ONE = 1.0D+0 )
  112: *     ..
  113: *     .. Local Scalars ..
  114:       LOGICAL            LQUERY, UPPER, WANTZ
  115:       CHARACTER          TRANS
  116:       INTEGER            LWKMIN, LWKOPT, NB, NEIG
  117: *     ..
  118: *     .. External Functions ..
  119:       LOGICAL            LSAME
  120:       INTEGER            ILAENV
  121:       EXTERNAL           LSAME, ILAENV
  122: *     ..
  123: *     .. External Subroutines ..
  124:       EXTERNAL           DPOTRF, DSYEV, DSYGST, DTRMM, DTRSM, XERBLA
  125: *     ..
  126: *     .. Intrinsic Functions ..
  127:       INTRINSIC          MAX
  128: *     ..
  129: *     .. Executable Statements ..
  130: *
  131: *     Test the input parameters.
  132: *
  133:       WANTZ = LSAME( JOBZ, 'V' )
  134:       UPPER = LSAME( UPLO, 'U' )
  135:       LQUERY = ( LWORK.EQ.-1 )
  136: *
  137:       INFO = 0
  138:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  139:          INFO = -1
  140:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  141:          INFO = -2
  142:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  143:          INFO = -3
  144:       ELSE IF( N.LT.0 ) THEN
  145:          INFO = -4
  146:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  147:          INFO = -6
  148:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  149:          INFO = -8
  150:       END IF
  151: *
  152:       IF( INFO.EQ.0 ) THEN
  153:          LWKMIN = MAX( 1, 3*N - 1 )
  154:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
  155:          LWKOPT = MAX( LWKMIN, ( NB + 2 )*N )
  156:          WORK( 1 ) = LWKOPT
  157: *
  158:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  159:             INFO = -11
  160:          END IF
  161:       END IF
  162: *
  163:       IF( INFO.NE.0 ) THEN
  164:          CALL XERBLA( 'DSYGV ', -INFO )
  165:          RETURN
  166:       ELSE IF( LQUERY ) THEN
  167:          RETURN
  168:       END IF
  169: *
  170: *     Quick return if possible
  171: *
  172:       IF( N.EQ.0 )
  173:      $   RETURN
  174: *
  175: *     Form a Cholesky factorization of B.
  176: *
  177:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
  178:       IF( INFO.NE.0 ) THEN
  179:          INFO = N + INFO
  180:          RETURN
  181:       END IF
  182: *
  183: *     Transform problem to standard eigenvalue problem and solve.
  184: *
  185:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  186:       CALL DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
  187: *
  188:       IF( WANTZ ) THEN
  189: *
  190: *        Backtransform eigenvectors to the original problem.
  191: *
  192:          NEIG = N
  193:          IF( INFO.GT.0 )
  194:      $      NEIG = INFO - 1
  195:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  196: *
  197: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  198: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  199: *
  200:             IF( UPPER ) THEN
  201:                TRANS = 'N'
  202:             ELSE
  203:                TRANS = 'T'
  204:             END IF
  205: *
  206:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
  207:      $                  B, LDB, A, LDA )
  208: *
  209:          ELSE IF( ITYPE.EQ.3 ) THEN
  210: *
  211: *           For B*A*x=(lambda)*x;
  212: *           backtransform eigenvectors: x = L*y or U**T*y
  213: *
  214:             IF( UPPER ) THEN
  215:                TRANS = 'T'
  216:             ELSE
  217:                TRANS = 'N'
  218:             END IF
  219: *
  220:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
  221:      $                  B, LDB, A, LDA )
  222:          END IF
  223:       END IF
  224: *
  225:       WORK( 1 ) = LWKOPT
  226:       RETURN
  227: *
  228: *     End of DSYGV
  229: *
  230:       END

CVSweb interface <joel.bertrand@systella.fr>