Annotation of rpl/lapack/lapack/dsygv.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DSYGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DSYGV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygv.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygv.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygv.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
        !            22: *                         LWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> DSYGV computes all the eigenvalues, and optionally, the eigenvectors
        !            39: *> of a real generalized symmetric-definite eigenproblem, of the form
        !            40: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
        !            41: *> Here A and B are assumed to be symmetric and B is also
        !            42: *> positive definite.
        !            43: *> \endverbatim
        !            44: *
        !            45: *  Arguments:
        !            46: *  ==========
        !            47: *
        !            48: *> \param[in] ITYPE
        !            49: *> \verbatim
        !            50: *>          ITYPE is INTEGER
        !            51: *>          Specifies the problem type to be solved:
        !            52: *>          = 1:  A*x = (lambda)*B*x
        !            53: *>          = 2:  A*B*x = (lambda)*x
        !            54: *>          = 3:  B*A*x = (lambda)*x
        !            55: *> \endverbatim
        !            56: *>
        !            57: *> \param[in] JOBZ
        !            58: *> \verbatim
        !            59: *>          JOBZ is CHARACTER*1
        !            60: *>          = 'N':  Compute eigenvalues only;
        !            61: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] UPLO
        !            65: *> \verbatim
        !            66: *>          UPLO is CHARACTER*1
        !            67: *>          = 'U':  Upper triangles of A and B are stored;
        !            68: *>          = 'L':  Lower triangles of A and B are stored.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] N
        !            72: *> \verbatim
        !            73: *>          N is INTEGER
        !            74: *>          The order of the matrices A and B.  N >= 0.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in,out] A
        !            78: *> \verbatim
        !            79: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
        !            80: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
        !            81: *>          leading N-by-N upper triangular part of A contains the
        !            82: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !            83: *>          the leading N-by-N lower triangular part of A contains
        !            84: *>          the lower triangular part of the matrix A.
        !            85: *>
        !            86: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            87: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
        !            88: *>          as follows:
        !            89: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
        !            90: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
        !            91: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
        !            92: *>          or the lower triangle (if UPLO='L') of A, including the
        !            93: *>          diagonal, is destroyed.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[in] LDA
        !            97: *> \verbatim
        !            98: *>          LDA is INTEGER
        !            99: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[in,out] B
        !           103: *> \verbatim
        !           104: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
        !           105: *>          On entry, the symmetric positive definite matrix B.
        !           106: *>          If UPLO = 'U', the leading N-by-N upper triangular part of B
        !           107: *>          contains the upper triangular part of the matrix B.
        !           108: *>          If UPLO = 'L', the leading N-by-N lower triangular part of B
        !           109: *>          contains the lower triangular part of the matrix B.
        !           110: *>
        !           111: *>          On exit, if INFO <= N, the part of B containing the matrix is
        !           112: *>          overwritten by the triangular factor U or L from the Cholesky
        !           113: *>          factorization B = U**T*U or B = L*L**T.
        !           114: *> \endverbatim
        !           115: *>
        !           116: *> \param[in] LDB
        !           117: *> \verbatim
        !           118: *>          LDB is INTEGER
        !           119: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[out] W
        !           123: *> \verbatim
        !           124: *>          W is DOUBLE PRECISION array, dimension (N)
        !           125: *>          If INFO = 0, the eigenvalues in ascending order.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[out] WORK
        !           129: *> \verbatim
        !           130: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           131: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           132: *> \endverbatim
        !           133: *>
        !           134: *> \param[in] LWORK
        !           135: *> \verbatim
        !           136: *>          LWORK is INTEGER
        !           137: *>          The length of the array WORK.  LWORK >= max(1,3*N-1).
        !           138: *>          For optimal efficiency, LWORK >= (NB+2)*N,
        !           139: *>          where NB is the blocksize for DSYTRD returned by ILAENV.
        !           140: *>
        !           141: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           142: *>          only calculates the optimal size of the WORK array, returns
        !           143: *>          this value as the first entry of the WORK array, and no error
        !           144: *>          message related to LWORK is issued by XERBLA.
        !           145: *> \endverbatim
        !           146: *>
        !           147: *> \param[out] INFO
        !           148: *> \verbatim
        !           149: *>          INFO is INTEGER
        !           150: *>          = 0:  successful exit
        !           151: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           152: *>          > 0:  DPOTRF or DSYEV returned an error code:
        !           153: *>             <= N:  if INFO = i, DSYEV failed to converge;
        !           154: *>                    i off-diagonal elements of an intermediate
        !           155: *>                    tridiagonal form did not converge to zero;
        !           156: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
        !           157: *>                    minor of order i of B is not positive definite.
        !           158: *>                    The factorization of B could not be completed and
        !           159: *>                    no eigenvalues or eigenvectors were computed.
        !           160: *> \endverbatim
        !           161: *
        !           162: *  Authors:
        !           163: *  ========
        !           164: *
        !           165: *> \author Univ. of Tennessee 
        !           166: *> \author Univ. of California Berkeley 
        !           167: *> \author Univ. of Colorado Denver 
        !           168: *> \author NAG Ltd. 
        !           169: *
        !           170: *> \date November 2011
        !           171: *
        !           172: *> \ingroup doubleSYeigen
        !           173: *
        !           174: *  =====================================================================
1.1       bertrand  175:       SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                    176:      $                  LWORK, INFO )
                    177: *
1.9     ! bertrand  178: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  181: *     November 2011
1.1       bertrand  182: *
                    183: *     .. Scalar Arguments ..
                    184:       CHARACTER          JOBZ, UPLO
                    185:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
                    186: *     ..
                    187: *     .. Array Arguments ..
                    188:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
                    189: *     ..
                    190: *
                    191: *  =====================================================================
                    192: *
                    193: *     .. Parameters ..
                    194:       DOUBLE PRECISION   ONE
                    195:       PARAMETER          ( ONE = 1.0D+0 )
                    196: *     ..
                    197: *     .. Local Scalars ..
                    198:       LOGICAL            LQUERY, UPPER, WANTZ
                    199:       CHARACTER          TRANS
                    200:       INTEGER            LWKMIN, LWKOPT, NB, NEIG
                    201: *     ..
                    202: *     .. External Functions ..
                    203:       LOGICAL            LSAME
                    204:       INTEGER            ILAENV
                    205:       EXTERNAL           LSAME, ILAENV
                    206: *     ..
                    207: *     .. External Subroutines ..
                    208:       EXTERNAL           DPOTRF, DSYEV, DSYGST, DTRMM, DTRSM, XERBLA
                    209: *     ..
                    210: *     .. Intrinsic Functions ..
                    211:       INTRINSIC          MAX
                    212: *     ..
                    213: *     .. Executable Statements ..
                    214: *
                    215: *     Test the input parameters.
                    216: *
                    217:       WANTZ = LSAME( JOBZ, 'V' )
                    218:       UPPER = LSAME( UPLO, 'U' )
                    219:       LQUERY = ( LWORK.EQ.-1 )
                    220: *
                    221:       INFO = 0
                    222:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    223:          INFO = -1
                    224:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    225:          INFO = -2
                    226:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    227:          INFO = -3
                    228:       ELSE IF( N.LT.0 ) THEN
                    229:          INFO = -4
                    230:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    231:          INFO = -6
                    232:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    233:          INFO = -8
                    234:       END IF
                    235: *
                    236:       IF( INFO.EQ.0 ) THEN
                    237:          LWKMIN = MAX( 1, 3*N - 1 )
                    238:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
                    239:          LWKOPT = MAX( LWKMIN, ( NB + 2 )*N )
                    240:          WORK( 1 ) = LWKOPT
                    241: *
                    242:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    243:             INFO = -11
                    244:          END IF
                    245:       END IF
                    246: *
                    247:       IF( INFO.NE.0 ) THEN
                    248:          CALL XERBLA( 'DSYGV ', -INFO )
                    249:          RETURN
                    250:       ELSE IF( LQUERY ) THEN
                    251:          RETURN
                    252:       END IF
                    253: *
                    254: *     Quick return if possible
                    255: *
                    256:       IF( N.EQ.0 )
                    257:      $   RETURN
                    258: *
                    259: *     Form a Cholesky factorization of B.
                    260: *
                    261:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
                    262:       IF( INFO.NE.0 ) THEN
                    263:          INFO = N + INFO
                    264:          RETURN
                    265:       END IF
                    266: *
                    267: *     Transform problem to standard eigenvalue problem and solve.
                    268: *
                    269:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    270:       CALL DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
                    271: *
                    272:       IF( WANTZ ) THEN
                    273: *
                    274: *        Backtransform eigenvectors to the original problem.
                    275: *
                    276:          NEIG = N
                    277:          IF( INFO.GT.0 )
                    278:      $      NEIG = INFO - 1
                    279:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    280: *
                    281: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  282: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
1.1       bertrand  283: *
                    284:             IF( UPPER ) THEN
                    285:                TRANS = 'N'
                    286:             ELSE
                    287:                TRANS = 'T'
                    288:             END IF
                    289: *
                    290:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    291:      $                  B, LDB, A, LDA )
                    292: *
                    293:          ELSE IF( ITYPE.EQ.3 ) THEN
                    294: *
                    295: *           For B*A*x=(lambda)*x;
1.8       bertrand  296: *           backtransform eigenvectors: x = L*y or U**T*y
1.1       bertrand  297: *
                    298:             IF( UPPER ) THEN
                    299:                TRANS = 'T'
                    300:             ELSE
                    301:                TRANS = 'N'
                    302:             END IF
                    303: *
                    304:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    305:      $                  B, LDB, A, LDA )
                    306:          END IF
                    307:       END IF
                    308: *
                    309:       WORK( 1 ) = LWKOPT
                    310:       RETURN
                    311: *
                    312: *     End of DSYGV
                    313: *
                    314:       END

CVSweb interface <joel.bertrand@systella.fr>