Annotation of rpl/lapack/lapack/dsygv.f, revision 1.19

1.14      bertrand    1: *> \brief \b DSYGV
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DSYGV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygv.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                     22: *                         LWORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
                     30: *       ..
1.16      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DSYGV computes all the eigenvalues, and optionally, the eigenvectors
                     39: *> of a real generalized symmetric-definite eigenproblem, of the form
                     40: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
                     41: *> Here A and B are assumed to be symmetric and B is also
                     42: *> positive definite.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] ITYPE
                     49: *> \verbatim
                     50: *>          ITYPE is INTEGER
                     51: *>          Specifies the problem type to be solved:
                     52: *>          = 1:  A*x = (lambda)*B*x
                     53: *>          = 2:  A*B*x = (lambda)*x
                     54: *>          = 3:  B*A*x = (lambda)*x
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] JOBZ
                     58: *> \verbatim
                     59: *>          JOBZ is CHARACTER*1
                     60: *>          = 'N':  Compute eigenvalues only;
                     61: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] UPLO
                     65: *> \verbatim
                     66: *>          UPLO is CHARACTER*1
                     67: *>          = 'U':  Upper triangles of A and B are stored;
                     68: *>          = 'L':  Lower triangles of A and B are stored.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] N
                     72: *> \verbatim
                     73: *>          N is INTEGER
                     74: *>          The order of the matrices A and B.  N >= 0.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in,out] A
                     78: *> \verbatim
                     79: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                     80: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     81: *>          leading N-by-N upper triangular part of A contains the
                     82: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     83: *>          the leading N-by-N lower triangular part of A contains
                     84: *>          the lower triangular part of the matrix A.
                     85: *>
                     86: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     87: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
                     88: *>          as follows:
                     89: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
                     90: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
                     91: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
                     92: *>          or the lower triangle (if UPLO='L') of A, including the
                     93: *>          diagonal, is destroyed.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDA
                     97: *> \verbatim
                     98: *>          LDA is INTEGER
                     99: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in,out] B
                    103: *> \verbatim
                    104: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
                    105: *>          On entry, the symmetric positive definite matrix B.
                    106: *>          If UPLO = 'U', the leading N-by-N upper triangular part of B
                    107: *>          contains the upper triangular part of the matrix B.
                    108: *>          If UPLO = 'L', the leading N-by-N lower triangular part of B
                    109: *>          contains the lower triangular part of the matrix B.
                    110: *>
                    111: *>          On exit, if INFO <= N, the part of B containing the matrix is
                    112: *>          overwritten by the triangular factor U or L from the Cholesky
                    113: *>          factorization B = U**T*U or B = L*L**T.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDB
                    117: *> \verbatim
                    118: *>          LDB is INTEGER
                    119: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[out] W
                    123: *> \verbatim
                    124: *>          W is DOUBLE PRECISION array, dimension (N)
                    125: *>          If INFO = 0, the eigenvalues in ascending order.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] WORK
                    129: *> \verbatim
                    130: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    131: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LWORK
                    135: *> \verbatim
                    136: *>          LWORK is INTEGER
                    137: *>          The length of the array WORK.  LWORK >= max(1,3*N-1).
                    138: *>          For optimal efficiency, LWORK >= (NB+2)*N,
                    139: *>          where NB is the blocksize for DSYTRD returned by ILAENV.
                    140: *>
                    141: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    142: *>          only calculates the optimal size of the WORK array, returns
                    143: *>          this value as the first entry of the WORK array, and no error
                    144: *>          message related to LWORK is issued by XERBLA.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] INFO
                    148: *> \verbatim
                    149: *>          INFO is INTEGER
                    150: *>          = 0:  successful exit
                    151: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    152: *>          > 0:  DPOTRF or DSYEV returned an error code:
                    153: *>             <= N:  if INFO = i, DSYEV failed to converge;
                    154: *>                    i off-diagonal elements of an intermediate
                    155: *>                    tridiagonal form did not converge to zero;
                    156: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    157: *>                    minor of order i of B is not positive definite.
                    158: *>                    The factorization of B could not be completed and
                    159: *>                    no eigenvalues or eigenvectors were computed.
                    160: *> \endverbatim
                    161: *
                    162: *  Authors:
                    163: *  ========
                    164: *
1.16      bertrand  165: *> \author Univ. of Tennessee
                    166: *> \author Univ. of California Berkeley
                    167: *> \author Univ. of Colorado Denver
                    168: *> \author NAG Ltd.
1.9       bertrand  169: *
                    170: *> \ingroup doubleSYeigen
                    171: *
                    172: *  =====================================================================
1.1       bertrand  173:       SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                    174:      $                  LWORK, INFO )
                    175: *
1.19    ! bertrand  176: *  -- LAPACK driver routine --
1.1       bertrand  177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    179: *
                    180: *     .. Scalar Arguments ..
                    181:       CHARACTER          JOBZ, UPLO
                    182:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
                    183: *     ..
                    184: *     .. Array Arguments ..
                    185:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
                    186: *     ..
                    187: *
                    188: *  =====================================================================
                    189: *
                    190: *     .. Parameters ..
                    191:       DOUBLE PRECISION   ONE
                    192:       PARAMETER          ( ONE = 1.0D+0 )
                    193: *     ..
                    194: *     .. Local Scalars ..
                    195:       LOGICAL            LQUERY, UPPER, WANTZ
                    196:       CHARACTER          TRANS
                    197:       INTEGER            LWKMIN, LWKOPT, NB, NEIG
                    198: *     ..
                    199: *     .. External Functions ..
                    200:       LOGICAL            LSAME
                    201:       INTEGER            ILAENV
                    202:       EXTERNAL           LSAME, ILAENV
                    203: *     ..
                    204: *     .. External Subroutines ..
                    205:       EXTERNAL           DPOTRF, DSYEV, DSYGST, DTRMM, DTRSM, XERBLA
                    206: *     ..
                    207: *     .. Intrinsic Functions ..
                    208:       INTRINSIC          MAX
                    209: *     ..
                    210: *     .. Executable Statements ..
                    211: *
                    212: *     Test the input parameters.
                    213: *
                    214:       WANTZ = LSAME( JOBZ, 'V' )
                    215:       UPPER = LSAME( UPLO, 'U' )
                    216:       LQUERY = ( LWORK.EQ.-1 )
                    217: *
                    218:       INFO = 0
                    219:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    220:          INFO = -1
                    221:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    222:          INFO = -2
                    223:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    224:          INFO = -3
                    225:       ELSE IF( N.LT.0 ) THEN
                    226:          INFO = -4
                    227:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    228:          INFO = -6
                    229:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    230:          INFO = -8
                    231:       END IF
                    232: *
                    233:       IF( INFO.EQ.0 ) THEN
                    234:          LWKMIN = MAX( 1, 3*N - 1 )
                    235:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
                    236:          LWKOPT = MAX( LWKMIN, ( NB + 2 )*N )
                    237:          WORK( 1 ) = LWKOPT
                    238: *
                    239:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    240:             INFO = -11
                    241:          END IF
                    242:       END IF
                    243: *
                    244:       IF( INFO.NE.0 ) THEN
                    245:          CALL XERBLA( 'DSYGV ', -INFO )
                    246:          RETURN
                    247:       ELSE IF( LQUERY ) THEN
                    248:          RETURN
                    249:       END IF
                    250: *
                    251: *     Quick return if possible
                    252: *
                    253:       IF( N.EQ.0 )
                    254:      $   RETURN
                    255: *
                    256: *     Form a Cholesky factorization of B.
                    257: *
                    258:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
                    259:       IF( INFO.NE.0 ) THEN
                    260:          INFO = N + INFO
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     Transform problem to standard eigenvalue problem and solve.
                    265: *
                    266:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    267:       CALL DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
                    268: *
                    269:       IF( WANTZ ) THEN
                    270: *
                    271: *        Backtransform eigenvectors to the original problem.
                    272: *
                    273:          NEIG = N
                    274:          IF( INFO.GT.0 )
                    275:      $      NEIG = INFO - 1
                    276:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    277: *
                    278: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  279: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
1.1       bertrand  280: *
                    281:             IF( UPPER ) THEN
                    282:                TRANS = 'N'
                    283:             ELSE
                    284:                TRANS = 'T'
                    285:             END IF
                    286: *
                    287:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    288:      $                  B, LDB, A, LDA )
                    289: *
                    290:          ELSE IF( ITYPE.EQ.3 ) THEN
                    291: *
                    292: *           For B*A*x=(lambda)*x;
1.8       bertrand  293: *           backtransform eigenvectors: x = L*y or U**T*y
1.1       bertrand  294: *
                    295:             IF( UPPER ) THEN
                    296:                TRANS = 'T'
                    297:             ELSE
                    298:                TRANS = 'N'
                    299:             END IF
                    300: *
                    301:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    302:      $                  B, LDB, A, LDA )
                    303:          END IF
                    304:       END IF
                    305: *
                    306:       WORK( 1 ) = LWKOPT
                    307:       RETURN
                    308: *
                    309: *     End of DSYGV
                    310: *
                    311:       END

CVSweb interface <joel.bertrand@systella.fr>