Annotation of rpl/lapack/lapack/dsygv.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
        !             2:      $                  LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  DSYGV computes all the eigenvalues, and optionally, the eigenvectors
        !            21: *  of a real generalized symmetric-definite eigenproblem, of the form
        !            22: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
        !            23: *  Here A and B are assumed to be symmetric and B is also
        !            24: *  positive definite.
        !            25: *
        !            26: *  Arguments
        !            27: *  =========
        !            28: *
        !            29: *  ITYPE   (input) INTEGER
        !            30: *          Specifies the problem type to be solved:
        !            31: *          = 1:  A*x = (lambda)*B*x
        !            32: *          = 2:  A*B*x = (lambda)*x
        !            33: *          = 3:  B*A*x = (lambda)*x
        !            34: *
        !            35: *  JOBZ    (input) CHARACTER*1
        !            36: *          = 'N':  Compute eigenvalues only;
        !            37: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            38: *
        !            39: *  UPLO    (input) CHARACTER*1
        !            40: *          = 'U':  Upper triangles of A and B are stored;
        !            41: *          = 'L':  Lower triangles of A and B are stored.
        !            42: *
        !            43: *  N       (input) INTEGER
        !            44: *          The order of the matrices A and B.  N >= 0.
        !            45: *
        !            46: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !            47: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
        !            48: *          leading N-by-N upper triangular part of A contains the
        !            49: *          upper triangular part of the matrix A.  If UPLO = 'L',
        !            50: *          the leading N-by-N lower triangular part of A contains
        !            51: *          the lower triangular part of the matrix A.
        !            52: *
        !            53: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            54: *          matrix Z of eigenvectors.  The eigenvectors are normalized
        !            55: *          as follows:
        !            56: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
        !            57: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
        !            58: *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
        !            59: *          or the lower triangle (if UPLO='L') of A, including the
        !            60: *          diagonal, is destroyed.
        !            61: *
        !            62: *  LDA     (input) INTEGER
        !            63: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            64: *
        !            65: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
        !            66: *          On entry, the symmetric positive definite matrix B.
        !            67: *          If UPLO = 'U', the leading N-by-N upper triangular part of B
        !            68: *          contains the upper triangular part of the matrix B.
        !            69: *          If UPLO = 'L', the leading N-by-N lower triangular part of B
        !            70: *          contains the lower triangular part of the matrix B.
        !            71: *
        !            72: *          On exit, if INFO <= N, the part of B containing the matrix is
        !            73: *          overwritten by the triangular factor U or L from the Cholesky
        !            74: *          factorization B = U**T*U or B = L*L**T.
        !            75: *
        !            76: *  LDB     (input) INTEGER
        !            77: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            78: *
        !            79: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            80: *          If INFO = 0, the eigenvalues in ascending order.
        !            81: *
        !            82: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            83: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            84: *
        !            85: *  LWORK   (input) INTEGER
        !            86: *          The length of the array WORK.  LWORK >= max(1,3*N-1).
        !            87: *          For optimal efficiency, LWORK >= (NB+2)*N,
        !            88: *          where NB is the blocksize for DSYTRD returned by ILAENV.
        !            89: *
        !            90: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            91: *          only calculates the optimal size of the WORK array, returns
        !            92: *          this value as the first entry of the WORK array, and no error
        !            93: *          message related to LWORK is issued by XERBLA.
        !            94: *
        !            95: *  INFO    (output) INTEGER
        !            96: *          = 0:  successful exit
        !            97: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            98: *          > 0:  DPOTRF or DSYEV returned an error code:
        !            99: *             <= N:  if INFO = i, DSYEV failed to converge;
        !           100: *                    i off-diagonal elements of an intermediate
        !           101: *                    tridiagonal form did not converge to zero;
        !           102: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
        !           103: *                    minor of order i of B is not positive definite.
        !           104: *                    The factorization of B could not be completed and
        !           105: *                    no eigenvalues or eigenvectors were computed.
        !           106: *
        !           107: *  =====================================================================
        !           108: *
        !           109: *     .. Parameters ..
        !           110:       DOUBLE PRECISION   ONE
        !           111:       PARAMETER          ( ONE = 1.0D+0 )
        !           112: *     ..
        !           113: *     .. Local Scalars ..
        !           114:       LOGICAL            LQUERY, UPPER, WANTZ
        !           115:       CHARACTER          TRANS
        !           116:       INTEGER            LWKMIN, LWKOPT, NB, NEIG
        !           117: *     ..
        !           118: *     .. External Functions ..
        !           119:       LOGICAL            LSAME
        !           120:       INTEGER            ILAENV
        !           121:       EXTERNAL           LSAME, ILAENV
        !           122: *     ..
        !           123: *     .. External Subroutines ..
        !           124:       EXTERNAL           DPOTRF, DSYEV, DSYGST, DTRMM, DTRSM, XERBLA
        !           125: *     ..
        !           126: *     .. Intrinsic Functions ..
        !           127:       INTRINSIC          MAX
        !           128: *     ..
        !           129: *     .. Executable Statements ..
        !           130: *
        !           131: *     Test the input parameters.
        !           132: *
        !           133:       WANTZ = LSAME( JOBZ, 'V' )
        !           134:       UPPER = LSAME( UPLO, 'U' )
        !           135:       LQUERY = ( LWORK.EQ.-1 )
        !           136: *
        !           137:       INFO = 0
        !           138:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
        !           139:          INFO = -1
        !           140:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           141:          INFO = -2
        !           142:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           143:          INFO = -3
        !           144:       ELSE IF( N.LT.0 ) THEN
        !           145:          INFO = -4
        !           146:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           147:          INFO = -6
        !           148:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           149:          INFO = -8
        !           150:       END IF
        !           151: *
        !           152:       IF( INFO.EQ.0 ) THEN
        !           153:          LWKMIN = MAX( 1, 3*N - 1 )
        !           154:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
        !           155:          LWKOPT = MAX( LWKMIN, ( NB + 2 )*N )
        !           156:          WORK( 1 ) = LWKOPT
        !           157: *
        !           158:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
        !           159:             INFO = -11
        !           160:          END IF
        !           161:       END IF
        !           162: *
        !           163:       IF( INFO.NE.0 ) THEN
        !           164:          CALL XERBLA( 'DSYGV ', -INFO )
        !           165:          RETURN
        !           166:       ELSE IF( LQUERY ) THEN
        !           167:          RETURN
        !           168:       END IF
        !           169: *
        !           170: *     Quick return if possible
        !           171: *
        !           172:       IF( N.EQ.0 )
        !           173:      $   RETURN
        !           174: *
        !           175: *     Form a Cholesky factorization of B.
        !           176: *
        !           177:       CALL DPOTRF( UPLO, N, B, LDB, INFO )
        !           178:       IF( INFO.NE.0 ) THEN
        !           179:          INFO = N + INFO
        !           180:          RETURN
        !           181:       END IF
        !           182: *
        !           183: *     Transform problem to standard eigenvalue problem and solve.
        !           184: *
        !           185:       CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
        !           186:       CALL DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
        !           187: *
        !           188:       IF( WANTZ ) THEN
        !           189: *
        !           190: *        Backtransform eigenvectors to the original problem.
        !           191: *
        !           192:          NEIG = N
        !           193:          IF( INFO.GT.0 )
        !           194:      $      NEIG = INFO - 1
        !           195:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
        !           196: *
        !           197: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
        !           198: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
        !           199: *
        !           200:             IF( UPPER ) THEN
        !           201:                TRANS = 'N'
        !           202:             ELSE
        !           203:                TRANS = 'T'
        !           204:             END IF
        !           205: *
        !           206:             CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
        !           207:      $                  B, LDB, A, LDA )
        !           208: *
        !           209:          ELSE IF( ITYPE.EQ.3 ) THEN
        !           210: *
        !           211: *           For B*A*x=(lambda)*x;
        !           212: *           backtransform eigenvectors: x = L*y or U'*y
        !           213: *
        !           214:             IF( UPPER ) THEN
        !           215:                TRANS = 'T'
        !           216:             ELSE
        !           217:                TRANS = 'N'
        !           218:             END IF
        !           219: *
        !           220:             CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
        !           221:      $                  B, LDB, A, LDA )
        !           222:          END IF
        !           223:       END IF
        !           224: *
        !           225:       WORK( 1 ) = LWKOPT
        !           226:       RETURN
        !           227: *
        !           228: *     End of DSYGV
        !           229: *
        !           230:       END

CVSweb interface <joel.bertrand@systella.fr>