File:  [local] / rpl / lapack / lapack / dsygst.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:08 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYGST
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYGST + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygst.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygst.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygst.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, ITYPE, LDA, LDB, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DSYGST reduces a real symmetric-definite generalized eigenproblem
   38: *> to standard form.
   39: *>
   40: *> If ITYPE = 1, the problem is A*x = lambda*B*x,
   41: *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
   42: *>
   43: *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
   44: *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
   45: *>
   46: *> B must have been previously factorized as U**T*U or L*L**T by DPOTRF.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] ITYPE
   53: *> \verbatim
   54: *>          ITYPE is INTEGER
   55: *>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
   56: *>          = 2 or 3: compute U*A*U**T or L**T*A*L.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          = 'U':  Upper triangle of A is stored and B is factored as
   63: *>                  U**T*U;
   64: *>          = 'L':  Lower triangle of A is stored and B is factored as
   65: *>                  L*L**T.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrices A and B.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] A
   75: *> \verbatim
   76: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   77: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   78: *>          N-by-N upper triangular part of A contains the upper
   79: *>          triangular part of the matrix A, and the strictly lower
   80: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   81: *>          leading N-by-N lower triangular part of A contains the lower
   82: *>          triangular part of the matrix A, and the strictly upper
   83: *>          triangular part of A is not referenced.
   84: *>
   85: *>          On exit, if INFO = 0, the transformed matrix, stored in the
   86: *>          same format as A.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDA
   90: *> \verbatim
   91: *>          LDA is INTEGER
   92: *>          The leading dimension of the array A.  LDA >= max(1,N).
   93: *> \endverbatim
   94: *>
   95: *> \param[in] B
   96: *> \verbatim
   97: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
   98: *>          The triangular factor from the Cholesky factorization of B,
   99: *>          as returned by DPOTRF.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDB
  103: *> \verbatim
  104: *>          LDB is INTEGER
  105: *>          The leading dimension of the array B.  LDB >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] INFO
  109: *> \verbatim
  110: *>          INFO is INTEGER
  111: *>          = 0:  successful exit
  112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  113: *> \endverbatim
  114: *
  115: *  Authors:
  116: *  ========
  117: *
  118: *> \author Univ. of Tennessee
  119: *> \author Univ. of California Berkeley
  120: *> \author Univ. of Colorado Denver
  121: *> \author NAG Ltd.
  122: *
  123: *> \ingroup doubleSYcomputational
  124: *
  125: *  =====================================================================
  126:       SUBROUTINE DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  127: *
  128: *  -- LAPACK computational routine --
  129: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  130: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  131: *
  132: *     .. Scalar Arguments ..
  133:       CHARACTER          UPLO
  134:       INTEGER            INFO, ITYPE, LDA, LDB, N
  135: *     ..
  136: *     .. Array Arguments ..
  137:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
  138: *     ..
  139: *
  140: *  =====================================================================
  141: *
  142: *     .. Parameters ..
  143:       DOUBLE PRECISION   ONE, HALF
  144:       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
  145: *     ..
  146: *     .. Local Scalars ..
  147:       LOGICAL            UPPER
  148:       INTEGER            K, KB, NB
  149: *     ..
  150: *     .. External Subroutines ..
  151:       EXTERNAL           DSYGS2, DSYMM, DSYR2K, DTRMM, DTRSM, XERBLA
  152: *     ..
  153: *     .. Intrinsic Functions ..
  154:       INTRINSIC          MAX, MIN
  155: *     ..
  156: *     .. External Functions ..
  157:       LOGICAL            LSAME
  158:       INTEGER            ILAENV
  159:       EXTERNAL           LSAME, ILAENV
  160: *     ..
  161: *     .. Executable Statements ..
  162: *
  163: *     Test the input parameters.
  164: *
  165:       INFO = 0
  166:       UPPER = LSAME( UPLO, 'U' )
  167:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  168:          INFO = -1
  169:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  170:          INFO = -2
  171:       ELSE IF( N.LT.0 ) THEN
  172:          INFO = -3
  173:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  174:          INFO = -5
  175:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  176:          INFO = -7
  177:       END IF
  178:       IF( INFO.NE.0 ) THEN
  179:          CALL XERBLA( 'DSYGST', -INFO )
  180:          RETURN
  181:       END IF
  182: *
  183: *     Quick return if possible
  184: *
  185:       IF( N.EQ.0 )
  186:      $   RETURN
  187: *
  188: *     Determine the block size for this environment.
  189: *
  190:       NB = ILAENV( 1, 'DSYGST', UPLO, N, -1, -1, -1 )
  191: *
  192:       IF( NB.LE.1 .OR. NB.GE.N ) THEN
  193: *
  194: *        Use unblocked code
  195: *
  196:          CALL DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  197:       ELSE
  198: *
  199: *        Use blocked code
  200: *
  201:          IF( ITYPE.EQ.1 ) THEN
  202:             IF( UPPER ) THEN
  203: *
  204: *              Compute inv(U**T)*A*inv(U)
  205: *
  206:                DO 10 K = 1, N, NB
  207:                   KB = MIN( N-K+1, NB )
  208: *
  209: *                 Update the upper triangle of A(k:n,k:n)
  210: *
  211:                   CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  212:      $                         B( K, K ), LDB, INFO )
  213:                   IF( K+KB.LE.N ) THEN
  214:                      CALL DTRSM( 'Left', UPLO, 'Transpose', 'Non-unit',
  215:      $                           KB, N-K-KB+1, ONE, B( K, K ), LDB,
  216:      $                           A( K, K+KB ), LDA )
  217:                      CALL DSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
  218:      $                           A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
  219:      $                           A( K, K+KB ), LDA )
  220:                      CALL DSYR2K( UPLO, 'Transpose', N-K-KB+1, KB, -ONE,
  221:      $                            A( K, K+KB ), LDA, B( K, K+KB ), LDB,
  222:      $                            ONE, A( K+KB, K+KB ), LDA )
  223:                      CALL DSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
  224:      $                           A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
  225:      $                           A( K, K+KB ), LDA )
  226:                      CALL DTRSM( 'Right', UPLO, 'No transpose',
  227:      $                           'Non-unit', KB, N-K-KB+1, ONE,
  228:      $                           B( K+KB, K+KB ), LDB, A( K, K+KB ),
  229:      $                           LDA )
  230:                   END IF
  231:    10          CONTINUE
  232:             ELSE
  233: *
  234: *              Compute inv(L)*A*inv(L**T)
  235: *
  236:                DO 20 K = 1, N, NB
  237:                   KB = MIN( N-K+1, NB )
  238: *
  239: *                 Update the lower triangle of A(k:n,k:n)
  240: *
  241:                   CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  242:      $                         B( K, K ), LDB, INFO )
  243:                   IF( K+KB.LE.N ) THEN
  244:                      CALL DTRSM( 'Right', UPLO, 'Transpose', 'Non-unit',
  245:      $                           N-K-KB+1, KB, ONE, B( K, K ), LDB,
  246:      $                           A( K+KB, K ), LDA )
  247:                      CALL DSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
  248:      $                           A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
  249:      $                           A( K+KB, K ), LDA )
  250:                      CALL DSYR2K( UPLO, 'No transpose', N-K-KB+1, KB,
  251:      $                            -ONE, A( K+KB, K ), LDA, B( K+KB, K ),
  252:      $                            LDB, ONE, A( K+KB, K+KB ), LDA )
  253:                      CALL DSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
  254:      $                           A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
  255:      $                           A( K+KB, K ), LDA )
  256:                      CALL DTRSM( 'Left', UPLO, 'No transpose',
  257:      $                           'Non-unit', N-K-KB+1, KB, ONE,
  258:      $                           B( K+KB, K+KB ), LDB, A( K+KB, K ),
  259:      $                           LDA )
  260:                   END IF
  261:    20          CONTINUE
  262:             END IF
  263:          ELSE
  264:             IF( UPPER ) THEN
  265: *
  266: *              Compute U*A*U**T
  267: *
  268:                DO 30 K = 1, N, NB
  269:                   KB = MIN( N-K+1, NB )
  270: *
  271: *                 Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
  272: *
  273:                   CALL DTRMM( 'Left', UPLO, 'No transpose', 'Non-unit',
  274:      $                        K-1, KB, ONE, B, LDB, A( 1, K ), LDA )
  275:                   CALL DSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
  276:      $                        LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
  277:                   CALL DSYR2K( UPLO, 'No transpose', K-1, KB, ONE,
  278:      $                         A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
  279:      $                         LDA )
  280:                   CALL DSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
  281:      $                        LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
  282:                   CALL DTRMM( 'Right', UPLO, 'Transpose', 'Non-unit',
  283:      $                        K-1, KB, ONE, B( K, K ), LDB, A( 1, K ),
  284:      $                        LDA )
  285:                   CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  286:      $                         B( K, K ), LDB, INFO )
  287:    30          CONTINUE
  288:             ELSE
  289: *
  290: *              Compute L**T*A*L
  291: *
  292:                DO 40 K = 1, N, NB
  293:                   KB = MIN( N-K+1, NB )
  294: *
  295: *                 Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
  296: *
  297:                   CALL DTRMM( 'Right', UPLO, 'No transpose', 'Non-unit',
  298:      $                        KB, K-1, ONE, B, LDB, A( K, 1 ), LDA )
  299:                   CALL DSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
  300:      $                        LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
  301:                   CALL DSYR2K( UPLO, 'Transpose', K-1, KB, ONE,
  302:      $                         A( K, 1 ), LDA, B( K, 1 ), LDB, ONE, A,
  303:      $                         LDA )
  304:                   CALL DSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
  305:      $                        LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
  306:                   CALL DTRMM( 'Left', UPLO, 'Transpose', 'Non-unit', KB,
  307:      $                        K-1, ONE, B( K, K ), LDB, A( K, 1 ), LDA )
  308:                   CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  309:      $                         B( K, K ), LDB, INFO )
  310:    40          CONTINUE
  311:             END IF
  312:          END IF
  313:       END IF
  314:       RETURN
  315: *
  316: *     End of DSYGST
  317: *
  318:       END

CVSweb interface <joel.bertrand@systella.fr>