File:  [local] / rpl / lapack / lapack / dsygs2.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:08 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYGS2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygs2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygs2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygs2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, ITYPE, LDA, LDB, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DSYGS2 reduces a real symmetric-definite generalized eigenproblem
   38: *> to standard form.
   39: *>
   40: *> If ITYPE = 1, the problem is A*x = lambda*B*x,
   41: *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
   42: *>
   43: *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
   44: *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
   45: *>
   46: *> B must have been previously factorized as U**T *U or L*L**T by DPOTRF.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] ITYPE
   53: *> \verbatim
   54: *>          ITYPE is INTEGER
   55: *>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
   56: *>          = 2 or 3: compute U*A*U**T or L**T *A*L.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          symmetric matrix A is stored, and how B has been factorized.
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrices A and B.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] A
   75: *> \verbatim
   76: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   77: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   78: *>          n by n upper triangular part of A contains the upper
   79: *>          triangular part of the matrix A, and the strictly lower
   80: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   81: *>          leading n by n lower triangular part of A contains the lower
   82: *>          triangular part of the matrix A, and the strictly upper
   83: *>          triangular part of A is not referenced.
   84: *>
   85: *>          On exit, if INFO = 0, the transformed matrix, stored in the
   86: *>          same format as A.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDA
   90: *> \verbatim
   91: *>          LDA is INTEGER
   92: *>          The leading dimension of the array A.  LDA >= max(1,N).
   93: *> \endverbatim
   94: *>
   95: *> \param[in] B
   96: *> \verbatim
   97: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
   98: *>          The triangular factor from the Cholesky factorization of B,
   99: *>          as returned by DPOTRF.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDB
  103: *> \verbatim
  104: *>          LDB is INTEGER
  105: *>          The leading dimension of the array B.  LDB >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] INFO
  109: *> \verbatim
  110: *>          INFO is INTEGER
  111: *>          = 0:  successful exit.
  112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  113: *> \endverbatim
  114: *
  115: *  Authors:
  116: *  ========
  117: *
  118: *> \author Univ. of Tennessee
  119: *> \author Univ. of California Berkeley
  120: *> \author Univ. of Colorado Denver
  121: *> \author NAG Ltd.
  122: *
  123: *> \ingroup doubleSYcomputational
  124: *
  125: *  =====================================================================
  126:       SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  127: *
  128: *  -- LAPACK computational routine --
  129: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  130: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  131: *
  132: *     .. Scalar Arguments ..
  133:       CHARACTER          UPLO
  134:       INTEGER            INFO, ITYPE, LDA, LDB, N
  135: *     ..
  136: *     .. Array Arguments ..
  137:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
  138: *     ..
  139: *
  140: *  =====================================================================
  141: *
  142: *     .. Parameters ..
  143:       DOUBLE PRECISION   ONE, HALF
  144:       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
  145: *     ..
  146: *     .. Local Scalars ..
  147:       LOGICAL            UPPER
  148:       INTEGER            K
  149:       DOUBLE PRECISION   AKK, BKK, CT
  150: *     ..
  151: *     .. External Subroutines ..
  152:       EXTERNAL           DAXPY, DSCAL, DSYR2, DTRMV, DTRSV, XERBLA
  153: *     ..
  154: *     .. Intrinsic Functions ..
  155:       INTRINSIC          MAX
  156: *     ..
  157: *     .. External Functions ..
  158:       LOGICAL            LSAME
  159:       EXTERNAL           LSAME
  160: *     ..
  161: *     .. Executable Statements ..
  162: *
  163: *     Test the input parameters.
  164: *
  165:       INFO = 0
  166:       UPPER = LSAME( UPLO, 'U' )
  167:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  168:          INFO = -1
  169:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  170:          INFO = -2
  171:       ELSE IF( N.LT.0 ) THEN
  172:          INFO = -3
  173:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  174:          INFO = -5
  175:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  176:          INFO = -7
  177:       END IF
  178:       IF( INFO.NE.0 ) THEN
  179:          CALL XERBLA( 'DSYGS2', -INFO )
  180:          RETURN
  181:       END IF
  182: *
  183:       IF( ITYPE.EQ.1 ) THEN
  184:          IF( UPPER ) THEN
  185: *
  186: *           Compute inv(U**T)*A*inv(U)
  187: *
  188:             DO 10 K = 1, N
  189: *
  190: *              Update the upper triangle of A(k:n,k:n)
  191: *
  192:                AKK = A( K, K )
  193:                BKK = B( K, K )
  194:                AKK = AKK / BKK**2
  195:                A( K, K ) = AKK
  196:                IF( K.LT.N ) THEN
  197:                   CALL DSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
  198:                   CT = -HALF*AKK
  199:                   CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  200:      $                        LDA )
  201:                   CALL DSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
  202:      $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
  203:                   CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  204:      $                        LDA )
  205:                   CALL DTRSV( UPLO, 'Transpose', 'Non-unit', N-K,
  206:      $                        B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
  207:                END IF
  208:    10       CONTINUE
  209:          ELSE
  210: *
  211: *           Compute inv(L)*A*inv(L**T)
  212: *
  213:             DO 20 K = 1, N
  214: *
  215: *              Update the lower triangle of A(k:n,k:n)
  216: *
  217:                AKK = A( K, K )
  218:                BKK = B( K, K )
  219:                AKK = AKK / BKK**2
  220:                A( K, K ) = AKK
  221:                IF( K.LT.N ) THEN
  222:                   CALL DSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
  223:                   CT = -HALF*AKK
  224:                   CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  225:                   CALL DSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
  226:      $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
  227:                   CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  228:                   CALL DTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
  229:      $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
  230:                END IF
  231:    20       CONTINUE
  232:          END IF
  233:       ELSE
  234:          IF( UPPER ) THEN
  235: *
  236: *           Compute U*A*U**T
  237: *
  238:             DO 30 K = 1, N
  239: *
  240: *              Update the upper triangle of A(1:k,1:k)
  241: *
  242:                AKK = A( K, K )
  243:                BKK = B( K, K )
  244:                CALL DTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
  245:      $                     LDB, A( 1, K ), 1 )
  246:                CT = HALF*AKK
  247:                CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  248:                CALL DSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
  249:      $                     A, LDA )
  250:                CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  251:                CALL DSCAL( K-1, BKK, A( 1, K ), 1 )
  252:                A( K, K ) = AKK*BKK**2
  253:    30       CONTINUE
  254:          ELSE
  255: *
  256: *           Compute L**T *A*L
  257: *
  258:             DO 40 K = 1, N
  259: *
  260: *              Update the lower triangle of A(1:k,1:k)
  261: *
  262:                AKK = A( K, K )
  263:                BKK = B( K, K )
  264:                CALL DTRMV( UPLO, 'Transpose', 'Non-unit', K-1, B, LDB,
  265:      $                     A( K, 1 ), LDA )
  266:                CT = HALF*AKK
  267:                CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  268:                CALL DSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
  269:      $                     LDB, A, LDA )
  270:                CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  271:                CALL DSCAL( K-1, BKK, A( K, 1 ), LDA )
  272:                A( K, K ) = AKK*BKK**2
  273:    40       CONTINUE
  274:          END IF
  275:       END IF
  276:       RETURN
  277: *
  278: *     End of DSYGS2
  279: *
  280:       END

CVSweb interface <joel.bertrand@systella.fr>