Annotation of rpl/lapack/lapack/dsygs2.f, revision 1.10

1.9       bertrand    1: *> \brief \b DSYGS2
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSYGS2 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygs2.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygs2.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygs2.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, ITYPE, LDA, LDB, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                     29: *       ..
                     30: *  
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DSYGS2 reduces a real symmetric-definite generalized eigenproblem
                     38: *> to standard form.
                     39: *>
                     40: *> If ITYPE = 1, the problem is A*x = lambda*B*x,
                     41: *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
                     42: *>
                     43: *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
                     44: *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
                     45: *>
                     46: *> B must have been previously factorized as U**T *U or L*L**T by DPOTRF.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] ITYPE
                     53: *> \verbatim
                     54: *>          ITYPE is INTEGER
                     55: *>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
                     56: *>          = 2 or 3: compute U*A*U**T or L**T *A*L.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          Specifies whether the upper or lower triangular part of the
                     63: *>          symmetric matrix A is stored, and how B has been factorized.
                     64: *>          = 'U':  Upper triangular
                     65: *>          = 'L':  Lower triangular
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrices A and B.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in,out] A
                     75: *> \verbatim
                     76: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     77: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     78: *>          n by n upper triangular part of A contains the upper
                     79: *>          triangular part of the matrix A, and the strictly lower
                     80: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     81: *>          leading n by n lower triangular part of A contains the lower
                     82: *>          triangular part of the matrix A, and the strictly upper
                     83: *>          triangular part of A is not referenced.
                     84: *>
                     85: *>          On exit, if INFO = 0, the transformed matrix, stored in the
                     86: *>          same format as A.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] LDA
                     90: *> \verbatim
                     91: *>          LDA is INTEGER
                     92: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] B
                     96: *> \verbatim
                     97: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                     98: *>          The triangular factor from the Cholesky factorization of B,
                     99: *>          as returned by DPOTRF.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDB
                    103: *> \verbatim
                    104: *>          LDB is INTEGER
                    105: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] INFO
                    109: *> \verbatim
                    110: *>          INFO is INTEGER
                    111: *>          = 0:  successful exit.
                    112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    113: *> \endverbatim
                    114: *
                    115: *  Authors:
                    116: *  ========
                    117: *
                    118: *> \author Univ. of Tennessee 
                    119: *> \author Univ. of California Berkeley 
                    120: *> \author Univ. of Colorado Denver 
                    121: *> \author NAG Ltd. 
                    122: *
                    123: *> \date November 2011
                    124: *
                    125: *> \ingroup doubleSYcomputational
                    126: *
                    127: *  =====================================================================
1.1       bertrand  128:       SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    129: *
1.9       bertrand  130: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  133: *     November 2011
1.1       bertrand  134: *
                    135: *     .. Scalar Arguments ..
                    136:       CHARACTER          UPLO
                    137:       INTEGER            INFO, ITYPE, LDA, LDB, N
                    138: *     ..
                    139: *     .. Array Arguments ..
                    140:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                    141: *     ..
                    142: *
                    143: *  =====================================================================
                    144: *
                    145: *     .. Parameters ..
                    146:       DOUBLE PRECISION   ONE, HALF
                    147:       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
                    148: *     ..
                    149: *     .. Local Scalars ..
                    150:       LOGICAL            UPPER
                    151:       INTEGER            K
                    152:       DOUBLE PRECISION   AKK, BKK, CT
                    153: *     ..
                    154: *     .. External Subroutines ..
                    155:       EXTERNAL           DAXPY, DSCAL, DSYR2, DTRMV, DTRSV, XERBLA
                    156: *     ..
                    157: *     .. Intrinsic Functions ..
                    158:       INTRINSIC          MAX
                    159: *     ..
                    160: *     .. External Functions ..
                    161:       LOGICAL            LSAME
                    162:       EXTERNAL           LSAME
                    163: *     ..
                    164: *     .. Executable Statements ..
                    165: *
                    166: *     Test the input parameters.
                    167: *
                    168:       INFO = 0
                    169:       UPPER = LSAME( UPLO, 'U' )
                    170:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    171:          INFO = -1
                    172:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    173:          INFO = -2
                    174:       ELSE IF( N.LT.0 ) THEN
                    175:          INFO = -3
                    176:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    177:          INFO = -5
                    178:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    179:          INFO = -7
                    180:       END IF
                    181:       IF( INFO.NE.0 ) THEN
                    182:          CALL XERBLA( 'DSYGS2', -INFO )
                    183:          RETURN
                    184:       END IF
                    185: *
                    186:       IF( ITYPE.EQ.1 ) THEN
                    187:          IF( UPPER ) THEN
                    188: *
1.8       bertrand  189: *           Compute inv(U**T)*A*inv(U)
1.1       bertrand  190: *
                    191:             DO 10 K = 1, N
                    192: *
                    193: *              Update the upper triangle of A(k:n,k:n)
                    194: *
                    195:                AKK = A( K, K )
                    196:                BKK = B( K, K )
                    197:                AKK = AKK / BKK**2
                    198:                A( K, K ) = AKK
                    199:                IF( K.LT.N ) THEN
                    200:                   CALL DSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
                    201:                   CT = -HALF*AKK
                    202:                   CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
                    203:      $                        LDA )
                    204:                   CALL DSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
                    205:      $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
                    206:                   CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
                    207:      $                        LDA )
                    208:                   CALL DTRSV( UPLO, 'Transpose', 'Non-unit', N-K,
                    209:      $                        B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
                    210:                END IF
                    211:    10       CONTINUE
                    212:          ELSE
                    213: *
1.8       bertrand  214: *           Compute inv(L)*A*inv(L**T)
1.1       bertrand  215: *
                    216:             DO 20 K = 1, N
                    217: *
                    218: *              Update the lower triangle of A(k:n,k:n)
                    219: *
                    220:                AKK = A( K, K )
                    221:                BKK = B( K, K )
                    222:                AKK = AKK / BKK**2
                    223:                A( K, K ) = AKK
                    224:                IF( K.LT.N ) THEN
                    225:                   CALL DSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
                    226:                   CT = -HALF*AKK
                    227:                   CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
                    228:                   CALL DSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
                    229:      $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
                    230:                   CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
                    231:                   CALL DTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
                    232:      $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
                    233:                END IF
                    234:    20       CONTINUE
                    235:          END IF
                    236:       ELSE
                    237:          IF( UPPER ) THEN
                    238: *
1.8       bertrand  239: *           Compute U*A*U**T
1.1       bertrand  240: *
                    241:             DO 30 K = 1, N
                    242: *
                    243: *              Update the upper triangle of A(1:k,1:k)
                    244: *
                    245:                AKK = A( K, K )
                    246:                BKK = B( K, K )
                    247:                CALL DTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
                    248:      $                     LDB, A( 1, K ), 1 )
                    249:                CT = HALF*AKK
                    250:                CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
                    251:                CALL DSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
                    252:      $                     A, LDA )
                    253:                CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
                    254:                CALL DSCAL( K-1, BKK, A( 1, K ), 1 )
                    255:                A( K, K ) = AKK*BKK**2
                    256:    30       CONTINUE
                    257:          ELSE
                    258: *
1.8       bertrand  259: *           Compute L**T *A*L
1.1       bertrand  260: *
                    261:             DO 40 K = 1, N
                    262: *
                    263: *              Update the lower triangle of A(1:k,1:k)
                    264: *
                    265:                AKK = A( K, K )
                    266:                BKK = B( K, K )
                    267:                CALL DTRMV( UPLO, 'Transpose', 'Non-unit', K-1, B, LDB,
                    268:      $                     A( K, 1 ), LDA )
                    269:                CT = HALF*AKK
                    270:                CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
                    271:                CALL DSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
                    272:      $                     LDB, A, LDA )
                    273:                CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
                    274:                CALL DSCAL( K-1, BKK, A( K, 1 ), LDA )
                    275:                A( K, K ) = AKK*BKK**2
                    276:    40       CONTINUE
                    277:          END IF
                    278:       END IF
                    279:       RETURN
                    280: *
                    281: *     End of DSYGS2
                    282: *
                    283:       END

CVSweb interface <joel.bertrand@systella.fr>