File:  [local] / rpl / lapack / lapack / dsyevx_2stage.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Tue May 29 06:55:21 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief <b> DSYEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
    2: *
    3: *  @precisions fortran d -> s
    4: *
    5: *  =========== DOCUMENTATION ===========
    6: *
    7: * Online html documentation available at
    8: *            http://www.netlib.org/lapack/explore-html/
    9: *
   10: *> \htmlonly
   11: *> Download DSYEVX_2STAGE + dependencies
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevx_2stage.f">
   13: *> [TGZ]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevx_2stage.f">
   15: *> [ZIP]</a>
   16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevx_2stage.f">
   17: *> [TXT]</a>
   18: *> \endhtmlonly
   19: *
   20: *  Definition:
   21: *  ===========
   22: *
   23: *       SUBROUTINE DSYEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
   24: *                                 IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
   25: *                                 LWORK, IWORK, IFAIL, INFO )
   26: *
   27: *       IMPLICIT NONE
   28: *
   29: *       .. Scalar Arguments ..
   30: *       CHARACTER          JOBZ, RANGE, UPLO
   31: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
   32: *       DOUBLE PRECISION   ABSTOL, VL, VU
   33: *       ..
   34: *       .. Array Arguments ..
   35: *       INTEGER            IFAIL( * ), IWORK( * )
   36: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DSYEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
   46: *> of a real symmetric matrix A using the 2stage technique for
   47: *> the reduction to tridiagonal.  Eigenvalues and eigenvectors can be
   48: *> selected by specifying either a range of values or a range of indices
   49: *> for the desired eigenvalues.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] JOBZ
   56: *> \verbatim
   57: *>          JOBZ is CHARACTER*1
   58: *>          = 'N':  Compute eigenvalues only;
   59: *>          = 'V':  Compute eigenvalues and eigenvectors.
   60: *>                  Not available in this release.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] RANGE
   64: *> \verbatim
   65: *>          RANGE is CHARACTER*1
   66: *>          = 'A': all eigenvalues will be found.
   67: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   68: *>                 will be found.
   69: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] UPLO
   73: *> \verbatim
   74: *>          UPLO is CHARACTER*1
   75: *>          = 'U':  Upper triangle of A is stored;
   76: *>          = 'L':  Lower triangle of A is stored.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix A.  N >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] A
   86: *> \verbatim
   87: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
   88: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
   89: *>          leading N-by-N upper triangular part of A contains the
   90: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   91: *>          the leading N-by-N lower triangular part of A contains
   92: *>          the lower triangular part of the matrix A.
   93: *>          On exit, the lower triangle (if UPLO='L') or the upper
   94: *>          triangle (if UPLO='U') of A, including the diagonal, is
   95: *>          destroyed.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] LDA
   99: *> \verbatim
  100: *>          LDA is INTEGER
  101: *>          The leading dimension of the array A.  LDA >= max(1,N).
  102: *> \endverbatim
  103: *>
  104: *> \param[in] VL
  105: *> \verbatim
  106: *>          VL is DOUBLE PRECISION
  107: *>          If RANGE='V', the lower bound of the interval to
  108: *>          be searched for eigenvalues. VL < VU.
  109: *>          Not referenced if RANGE = 'A' or 'I'.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] VU
  113: *> \verbatim
  114: *>          VU is DOUBLE PRECISION
  115: *>          If RANGE='V', the upper bound of the interval to
  116: *>          be searched for eigenvalues. VL < VU.
  117: *>          Not referenced if RANGE = 'A' or 'I'.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] IL
  121: *> \verbatim
  122: *>          IL is INTEGER
  123: *>          If RANGE='I', the index of the
  124: *>          smallest eigenvalue to be returned.
  125: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  126: *>          Not referenced if RANGE = 'A' or 'V'.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] IU
  130: *> \verbatim
  131: *>          IU is INTEGER
  132: *>          If RANGE='I', the index of the
  133: *>          largest eigenvalue to be returned.
  134: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  135: *>          Not referenced if RANGE = 'A' or 'V'.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] ABSTOL
  139: *> \verbatim
  140: *>          ABSTOL is DOUBLE PRECISION
  141: *>          The absolute error tolerance for the eigenvalues.
  142: *>          An approximate eigenvalue is accepted as converged
  143: *>          when it is determined to lie in an interval [a,b]
  144: *>          of width less than or equal to
  145: *>
  146: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  147: *>
  148: *>          where EPS is the machine precision.  If ABSTOL is less than
  149: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  150: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  151: *>          by reducing A to tridiagonal form.
  152: *>
  153: *>          Eigenvalues will be computed most accurately when ABSTOL is
  154: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  155: *>          If this routine returns with INFO>0, indicating that some
  156: *>          eigenvectors did not converge, try setting ABSTOL to
  157: *>          2*DLAMCH('S').
  158: *>
  159: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  160: *>          with Guaranteed High Relative Accuracy," by Demmel and
  161: *>          Kahan, LAPACK Working Note #3.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] M
  165: *> \verbatim
  166: *>          M is INTEGER
  167: *>          The total number of eigenvalues found.  0 <= M <= N.
  168: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  169: *> \endverbatim
  170: *>
  171: *> \param[out] W
  172: *> \verbatim
  173: *>          W is DOUBLE PRECISION array, dimension (N)
  174: *>          On normal exit, the first M elements contain the selected
  175: *>          eigenvalues in ascending order.
  176: *> \endverbatim
  177: *>
  178: *> \param[out] Z
  179: *> \verbatim
  180: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  181: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  182: *>          contain the orthonormal eigenvectors of the matrix A
  183: *>          corresponding to the selected eigenvalues, with the i-th
  184: *>          column of Z holding the eigenvector associated with W(i).
  185: *>          If an eigenvector fails to converge, then that column of Z
  186: *>          contains the latest approximation to the eigenvector, and the
  187: *>          index of the eigenvector is returned in IFAIL.
  188: *>          If JOBZ = 'N', then Z is not referenced.
  189: *>          Note: the user must ensure that at least max(1,M) columns are
  190: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  191: *>          is not known in advance and an upper bound must be used.
  192: *> \endverbatim
  193: *>
  194: *> \param[in] LDZ
  195: *> \verbatim
  196: *>          LDZ is INTEGER
  197: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  198: *>          JOBZ = 'V', LDZ >= max(1,N).
  199: *> \endverbatim
  200: *>
  201: *> \param[out] WORK
  202: *> \verbatim
  203: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  204: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] LWORK
  208: *> \verbatim
  209: *>          LWORK is INTEGER
  210: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
  211: *>          otherwise  
  212: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
  213: *>                                   LWORK = MAX(1, 8*N, dimension) where
  214: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + 3*N
  215: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
  216: *>                                               + max(2*KD*KD, KD*NTHREADS) 
  217: *>                                               + (KD+1)*N + 3*N
  218: *>                                   where KD is the blocking size of the reduction,
  219: *>                                   FACTOPTNB is the blocking used by the QR or LQ
  220: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
  221: *>                                   NTHREADS is the number of threads used when
  222: *>                                   openMP compilation is enabled, otherwise =1.
  223: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
  224: *>
  225: *>          If LWORK = -1, then a workspace query is assumed; the routine
  226: *>          only calculates the optimal size of the WORK array, returns
  227: *>          this value as the first entry of the WORK array, and no error
  228: *>          message related to LWORK is issued by XERBLA.
  229: *> \endverbatim
  230: *>
  231: *> \param[out] IWORK
  232: *> \verbatim
  233: *>          IWORK is INTEGER array, dimension (5*N)
  234: *> \endverbatim
  235: *>
  236: *> \param[out] IFAIL
  237: *> \verbatim
  238: *>          IFAIL is INTEGER array, dimension (N)
  239: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  240: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  241: *>          indices of the eigenvectors that failed to converge.
  242: *>          If JOBZ = 'N', then IFAIL is not referenced.
  243: *> \endverbatim
  244: *>
  245: *> \param[out] INFO
  246: *> \verbatim
  247: *>          INFO is INTEGER
  248: *>          = 0:  successful exit
  249: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  250: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  251: *>                Their indices are stored in array IFAIL.
  252: *> \endverbatim
  253: *
  254: *  Authors:
  255: *  ========
  256: *
  257: *> \author Univ. of Tennessee
  258: *> \author Univ. of California Berkeley
  259: *> \author Univ. of Colorado Denver
  260: *> \author NAG Ltd.
  261: *
  262: *> \date June 2016
  263: *
  264: *> \ingroup doubleSYeigen
  265: *
  266: *> \par Further Details:
  267: *  =====================
  268: *>
  269: *> \verbatim
  270: *>
  271: *>  All details about the 2stage techniques are available in:
  272: *>
  273: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  274: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
  275: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
  276: *>  of 2011 International Conference for High Performance Computing,
  277: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  278: *>  Article 8 , 11 pages.
  279: *>  http://doi.acm.org/10.1145/2063384.2063394
  280: *>
  281: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  282: *>  An improved parallel singular value algorithm and its implementation 
  283: *>  for multicore hardware, In Proceedings of 2013 International Conference
  284: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  285: *>  Denver, Colorado, USA, 2013.
  286: *>  Article 90, 12 pages.
  287: *>  http://doi.acm.org/10.1145/2503210.2503292
  288: *>
  289: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  290: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  291: *>  calculations based on fine-grained memory aware tasks.
  292: *>  International Journal of High Performance Computing Applications.
  293: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
  294: *>  http://hpc.sagepub.com/content/28/2/196 
  295: *>
  296: *> \endverbatim
  297: *
  298: *  =====================================================================
  299:       SUBROUTINE DSYEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
  300:      $                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
  301:      $                          LWORK, IWORK, IFAIL, INFO )
  302: *
  303:       IMPLICIT NONE
  304: *
  305: *  -- LAPACK driver routine (version 3.8.0) --
  306: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  307: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  308: *     June 2016
  309: *
  310: *     .. Scalar Arguments ..
  311:       CHARACTER          JOBZ, RANGE, UPLO
  312:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
  313:       DOUBLE PRECISION   ABSTOL, VL, VU
  314: *     ..
  315: *     .. Array Arguments ..
  316:       INTEGER            IFAIL( * ), IWORK( * )
  317:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
  318: *     ..
  319: *
  320: * =====================================================================
  321: *
  322: *     .. Parameters ..
  323:       DOUBLE PRECISION   ZERO, ONE
  324:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  325: *     ..
  326: *     .. Local Scalars ..
  327:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  328:      $                   WANTZ
  329:       CHARACTER          ORDER
  330:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  331:      $                   INDISP, INDIWO, INDTAU, INDWKN, INDWRK, ISCALE,
  332:      $                   ITMP1, J, JJ, LLWORK, LLWRKN,
  333:      $                   NSPLIT, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
  334:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  335:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  336: *     ..
  337: *     .. External Functions ..
  338:       LOGICAL            LSAME
  339:       INTEGER            ILAENV2STAGE
  340:       DOUBLE PRECISION   DLAMCH, DLANSY
  341:       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV2STAGE
  342: *     ..
  343: *     .. External Subroutines ..
  344:       EXTERNAL           DCOPY, DLACPY, DORGTR, DORMTR, DSCAL, DSTEBZ,
  345:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA,
  346:      $                   DSYTRD_2STAGE
  347: *     ..
  348: *     .. Intrinsic Functions ..
  349:       INTRINSIC          MAX, MIN, SQRT
  350: *     ..
  351: *     .. Executable Statements ..
  352: *
  353: *     Test the input parameters.
  354: *
  355:       LOWER = LSAME( UPLO, 'L' )
  356:       WANTZ = LSAME( JOBZ, 'V' )
  357:       ALLEIG = LSAME( RANGE, 'A' )
  358:       VALEIG = LSAME( RANGE, 'V' )
  359:       INDEIG = LSAME( RANGE, 'I' )
  360:       LQUERY = ( LWORK.EQ.-1 )
  361: *
  362:       INFO = 0
  363:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
  364:          INFO = -1
  365:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  366:          INFO = -2
  367:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  368:          INFO = -3
  369:       ELSE IF( N.LT.0 ) THEN
  370:          INFO = -4
  371:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  372:          INFO = -6
  373:       ELSE
  374:          IF( VALEIG ) THEN
  375:             IF( N.GT.0 .AND. VU.LE.VL )
  376:      $         INFO = -8
  377:          ELSE IF( INDEIG ) THEN
  378:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  379:                INFO = -9
  380:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  381:                INFO = -10
  382:             END IF
  383:          END IF
  384:       END IF
  385:       IF( INFO.EQ.0 ) THEN
  386:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  387:             INFO = -15
  388:          END IF
  389:       END IF
  390: *
  391:       IF( INFO.EQ.0 ) THEN
  392:          IF( N.LE.1 ) THEN
  393:             LWMIN = 1
  394:             WORK( 1 ) = LWMIN
  395:          ELSE
  396:             KD    = ILAENV2STAGE( 1, 'DSYTRD_2STAGE', JOBZ,
  397:      $                            N, -1, -1, -1 )
  398:             IB    = ILAENV2STAGE( 2, 'DSYTRD_2STAGE', JOBZ,
  399:      $                            N, KD, -1, -1 )
  400:             LHTRD = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', JOBZ,
  401:      $                            N, KD, IB, -1 )
  402:             LWTRD = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', JOBZ,
  403:      $                            N, KD, IB, -1 )
  404:             LWMIN = MAX( 8*N, 3*N + LHTRD + LWTRD )
  405:             WORK( 1 )  = LWMIN
  406:          END IF
  407: *
  408:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
  409:      $      INFO = -17
  410:       END IF
  411: *
  412:       IF( INFO.NE.0 ) THEN
  413:          CALL XERBLA( 'DSYEVX_2STAGE', -INFO )
  414:          RETURN
  415:       ELSE IF( LQUERY ) THEN
  416:          RETURN
  417:       END IF
  418: *
  419: *     Quick return if possible
  420: *
  421:       M = 0
  422:       IF( N.EQ.0 ) THEN
  423:          RETURN
  424:       END IF
  425: *
  426:       IF( N.EQ.1 ) THEN
  427:          IF( ALLEIG .OR. INDEIG ) THEN
  428:             M = 1
  429:             W( 1 ) = A( 1, 1 )
  430:          ELSE
  431:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
  432:                M = 1
  433:                W( 1 ) = A( 1, 1 )
  434:             END IF
  435:          END IF
  436:          IF( WANTZ )
  437:      $      Z( 1, 1 ) = ONE
  438:          RETURN
  439:       END IF
  440: *
  441: *     Get machine constants.
  442: *
  443:       SAFMIN = DLAMCH( 'Safe minimum' )
  444:       EPS    = DLAMCH( 'Precision' )
  445:       SMLNUM = SAFMIN / EPS
  446:       BIGNUM = ONE / SMLNUM
  447:       RMIN   = SQRT( SMLNUM )
  448:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  449: *
  450: *     Scale matrix to allowable range, if necessary.
  451: *
  452:       ISCALE = 0
  453:       ABSTLL = ABSTOL
  454:       IF( VALEIG ) THEN
  455:          VLL = VL
  456:          VUU = VU
  457:       END IF
  458:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  459:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  460:          ISCALE = 1
  461:          SIGMA = RMIN / ANRM
  462:       ELSE IF( ANRM.GT.RMAX ) THEN
  463:          ISCALE = 1
  464:          SIGMA = RMAX / ANRM
  465:       END IF
  466:       IF( ISCALE.EQ.1 ) THEN
  467:          IF( LOWER ) THEN
  468:             DO 10 J = 1, N
  469:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  470:    10       CONTINUE
  471:          ELSE
  472:             DO 20 J = 1, N
  473:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
  474:    20       CONTINUE
  475:          END IF
  476:          IF( ABSTOL.GT.0 )
  477:      $      ABSTLL = ABSTOL*SIGMA
  478:          IF( VALEIG ) THEN
  479:             VLL = VL*SIGMA
  480:             VUU = VU*SIGMA
  481:          END IF
  482:       END IF
  483: *
  484: *     Call DSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
  485: *
  486:       INDTAU  = 1
  487:       INDE    = INDTAU + N
  488:       INDD    = INDE + N
  489:       INDHOUS = INDD + N
  490:       INDWRK  = INDHOUS + LHTRD
  491:       LLWORK  = LWORK - INDWRK + 1
  492: *
  493:       CALL DSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, WORK( INDD ), 
  494:      $                    WORK( INDE ), WORK( INDTAU ), WORK( INDHOUS ),
  495:      $                    LHTRD, WORK( INDWRK ), LLWORK, IINFO )
  496: *
  497: *     If all eigenvalues are desired and ABSTOL is less than or equal to
  498: *     zero, then call DSTERF or DORGTR and SSTEQR.  If this fails for
  499: *     some eigenvalue, then try DSTEBZ.
  500: *
  501:       TEST = .FALSE.
  502:       IF( INDEIG ) THEN
  503:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  504:             TEST = .TRUE.
  505:          END IF
  506:       END IF
  507:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  508:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  509:          INDEE = INDWRK + 2*N
  510:          IF( .NOT.WANTZ ) THEN
  511:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  512:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  513:          ELSE
  514:             CALL DLACPY( 'A', N, N, A, LDA, Z, LDZ )
  515:             CALL DORGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  516:      $                   WORK( INDWRK ), LLWORK, IINFO )
  517:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  518:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  519:      $                   WORK( INDWRK ), INFO )
  520:             IF( INFO.EQ.0 ) THEN
  521:                DO 30 I = 1, N
  522:                   IFAIL( I ) = 0
  523:    30          CONTINUE
  524:             END IF
  525:          END IF
  526:          IF( INFO.EQ.0 ) THEN
  527:             M = N
  528:             GO TO 40
  529:          END IF
  530:          INFO = 0
  531:       END IF
  532: *
  533: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  534: *
  535:       IF( WANTZ ) THEN
  536:          ORDER = 'B'
  537:       ELSE
  538:          ORDER = 'E'
  539:       END IF
  540:       INDIBL = 1
  541:       INDISP = INDIBL + N
  542:       INDIWO = INDISP + N
  543:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  544:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  545:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  546:      $             IWORK( INDIWO ), INFO )
  547: *
  548:       IF( WANTZ ) THEN
  549:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  550:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  551:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  552: *
  553: *        Apply orthogonal matrix used in reduction to tridiagonal
  554: *        form to eigenvectors returned by DSTEIN.
  555: *
  556:          INDWKN = INDE
  557:          LLWRKN = LWORK - INDWKN + 1
  558:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  559:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  560:       END IF
  561: *
  562: *     If matrix was scaled, then rescale eigenvalues appropriately.
  563: *
  564:    40 CONTINUE
  565:       IF( ISCALE.EQ.1 ) THEN
  566:          IF( INFO.EQ.0 ) THEN
  567:             IMAX = M
  568:          ELSE
  569:             IMAX = INFO - 1
  570:          END IF
  571:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  572:       END IF
  573: *
  574: *     If eigenvalues are not in order, then sort them, along with
  575: *     eigenvectors.
  576: *
  577:       IF( WANTZ ) THEN
  578:          DO 60 J = 1, M - 1
  579:             I = 0
  580:             TMP1 = W( J )
  581:             DO 50 JJ = J + 1, M
  582:                IF( W( JJ ).LT.TMP1 ) THEN
  583:                   I = JJ
  584:                   TMP1 = W( JJ )
  585:                END IF
  586:    50       CONTINUE
  587: *
  588:             IF( I.NE.0 ) THEN
  589:                ITMP1 = IWORK( INDIBL+I-1 )
  590:                W( I ) = W( J )
  591:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  592:                W( J ) = TMP1
  593:                IWORK( INDIBL+J-1 ) = ITMP1
  594:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  595:                IF( INFO.NE.0 ) THEN
  596:                   ITMP1 = IFAIL( I )
  597:                   IFAIL( I ) = IFAIL( J )
  598:                   IFAIL( J ) = ITMP1
  599:                END IF
  600:             END IF
  601:    60    CONTINUE
  602:       END IF
  603: *
  604: *     Set WORK(1) to optimal workspace size.
  605: *
  606:       WORK( 1 ) = LWMIN
  607: *
  608:       RETURN
  609: *
  610: *     End of DSYEVX_2STAGE
  611: *
  612:       END

CVSweb interface <joel.bertrand@systella.fr>