Annotation of rpl/lapack/lapack/dsyevx_2stage.f, revision 1.5

1.1       bertrand    1: *> \brief <b> DSYEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
                      2: *
                      3: *  @precisions fortran d -> s
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download DSYEVX_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevx_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevx_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevx_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE DSYEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
                     24: *                                 IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
                     25: *                                 LWORK, IWORK, IFAIL, INFO )
                     26: *
                     27: *       IMPLICIT NONE
                     28: *
                     29: *       .. Scalar Arguments ..
                     30: *       CHARACTER          JOBZ, RANGE, UPLO
                     31: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                     32: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     33: *       ..
                     34: *       .. Array Arguments ..
                     35: *       INTEGER            IFAIL( * ), IWORK( * )
                     36: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
                     37: *       ..
                     38: *
                     39: *
                     40: *> \par Purpose:
                     41: *  =============
                     42: *>
                     43: *> \verbatim
                     44: *>
                     45: *> DSYEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
                     46: *> of a real symmetric matrix A using the 2stage technique for
                     47: *> the reduction to tridiagonal.  Eigenvalues and eigenvectors can be
                     48: *> selected by specifying either a range of values or a range of indices
                     49: *> for the desired eigenvalues.
                     50: *> \endverbatim
                     51: *
                     52: *  Arguments:
                     53: *  ==========
                     54: *
                     55: *> \param[in] JOBZ
                     56: *> \verbatim
                     57: *>          JOBZ is CHARACTER*1
                     58: *>          = 'N':  Compute eigenvalues only;
                     59: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     60: *>                  Not available in this release.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] RANGE
                     64: *> \verbatim
                     65: *>          RANGE is CHARACTER*1
                     66: *>          = 'A': all eigenvalues will be found.
                     67: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     68: *>                 will be found.
                     69: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] UPLO
                     73: *> \verbatim
                     74: *>          UPLO is CHARACTER*1
                     75: *>          = 'U':  Upper triangle of A is stored;
                     76: *>          = 'L':  Lower triangle of A is stored.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>          The order of the matrix A.  N >= 0.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in,out] A
                     86: *> \verbatim
                     87: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                     88: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     89: *>          leading N-by-N upper triangular part of A contains the
                     90: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     91: *>          the leading N-by-N lower triangular part of A contains
                     92: *>          the lower triangular part of the matrix A.
                     93: *>          On exit, the lower triangle (if UPLO='L') or the upper
                     94: *>          triangle (if UPLO='U') of A, including the diagonal, is
                     95: *>          destroyed.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] LDA
                     99: *> \verbatim
                    100: *>          LDA is INTEGER
                    101: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] VL
                    105: *> \verbatim
                    106: *>          VL is DOUBLE PRECISION
                    107: *>          If RANGE='V', the lower bound of the interval to
                    108: *>          be searched for eigenvalues. VL < VU.
                    109: *>          Not referenced if RANGE = 'A' or 'I'.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] VU
                    113: *> \verbatim
                    114: *>          VU is DOUBLE PRECISION
                    115: *>          If RANGE='V', the upper bound of the interval to
                    116: *>          be searched for eigenvalues. VL < VU.
                    117: *>          Not referenced if RANGE = 'A' or 'I'.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] IL
                    121: *> \verbatim
                    122: *>          IL is INTEGER
                    123: *>          If RANGE='I', the index of the
                    124: *>          smallest eigenvalue to be returned.
                    125: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    126: *>          Not referenced if RANGE = 'A' or 'V'.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] IU
                    130: *> \verbatim
                    131: *>          IU is INTEGER
                    132: *>          If RANGE='I', the index of the
                    133: *>          largest eigenvalue to be returned.
                    134: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    135: *>          Not referenced if RANGE = 'A' or 'V'.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] ABSTOL
                    139: *> \verbatim
                    140: *>          ABSTOL is DOUBLE PRECISION
                    141: *>          The absolute error tolerance for the eigenvalues.
                    142: *>          An approximate eigenvalue is accepted as converged
                    143: *>          when it is determined to lie in an interval [a,b]
                    144: *>          of width less than or equal to
                    145: *>
                    146: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    147: *>
                    148: *>          where EPS is the machine precision.  If ABSTOL is less than
                    149: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    150: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    151: *>          by reducing A to tridiagonal form.
                    152: *>
                    153: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    154: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    155: *>          If this routine returns with INFO>0, indicating that some
                    156: *>          eigenvectors did not converge, try setting ABSTOL to
                    157: *>          2*DLAMCH('S').
                    158: *>
                    159: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    160: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    161: *>          Kahan, LAPACK Working Note #3.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] M
                    165: *> \verbatim
                    166: *>          M is INTEGER
                    167: *>          The total number of eigenvalues found.  0 <= M <= N.
                    168: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[out] W
                    172: *> \verbatim
                    173: *>          W is DOUBLE PRECISION array, dimension (N)
                    174: *>          On normal exit, the first M elements contain the selected
                    175: *>          eigenvalues in ascending order.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] Z
                    179: *> \verbatim
                    180: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    181: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    182: *>          contain the orthonormal eigenvectors of the matrix A
                    183: *>          corresponding to the selected eigenvalues, with the i-th
                    184: *>          column of Z holding the eigenvector associated with W(i).
                    185: *>          If an eigenvector fails to converge, then that column of Z
                    186: *>          contains the latest approximation to the eigenvector, and the
                    187: *>          index of the eigenvector is returned in IFAIL.
                    188: *>          If JOBZ = 'N', then Z is not referenced.
                    189: *>          Note: the user must ensure that at least max(1,M) columns are
                    190: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    191: *>          is not known in advance and an upper bound must be used.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[in] LDZ
                    195: *> \verbatim
                    196: *>          LDZ is INTEGER
                    197: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    198: *>          JOBZ = 'V', LDZ >= max(1,N).
                    199: *> \endverbatim
                    200: *>
                    201: *> \param[out] WORK
                    202: *> \verbatim
                    203: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    204: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[in] LWORK
                    208: *> \verbatim
                    209: *>          LWORK is INTEGER
                    210: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    211: *>          otherwise  
                    212: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    213: *>                                   LWORK = MAX(1, 8*N, dimension) where
                    214: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + 3*N
                    215: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
                    216: *>                                               + max(2*KD*KD, KD*NTHREADS) 
                    217: *>                                               + (KD+1)*N + 3*N
                    218: *>                                   where KD is the blocking size of the reduction,
                    219: *>                                   FACTOPTNB is the blocking used by the QR or LQ
                    220: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
                    221: *>                                   NTHREADS is the number of threads used when
                    222: *>                                   openMP compilation is enabled, otherwise =1.
                    223: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
                    224: *>
                    225: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    226: *>          only calculates the optimal size of the WORK array, returns
                    227: *>          this value as the first entry of the WORK array, and no error
                    228: *>          message related to LWORK is issued by XERBLA.
                    229: *> \endverbatim
                    230: *>
                    231: *> \param[out] IWORK
                    232: *> \verbatim
                    233: *>          IWORK is INTEGER array, dimension (5*N)
                    234: *> \endverbatim
                    235: *>
                    236: *> \param[out] IFAIL
                    237: *> \verbatim
                    238: *>          IFAIL is INTEGER array, dimension (N)
                    239: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    240: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    241: *>          indices of the eigenvectors that failed to converge.
                    242: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    243: *> \endverbatim
                    244: *>
                    245: *> \param[out] INFO
                    246: *> \verbatim
                    247: *>          INFO is INTEGER
                    248: *>          = 0:  successful exit
                    249: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    250: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    251: *>                Their indices are stored in array IFAIL.
                    252: *> \endverbatim
                    253: *
                    254: *  Authors:
                    255: *  ========
                    256: *
                    257: *> \author Univ. of Tennessee
                    258: *> \author Univ. of California Berkeley
                    259: *> \author Univ. of Colorado Denver
                    260: *> \author NAG Ltd.
                    261: *
                    262: *> \ingroup doubleSYeigen
                    263: *
                    264: *> \par Further Details:
                    265: *  =====================
                    266: *>
                    267: *> \verbatim
                    268: *>
                    269: *>  All details about the 2stage techniques are available in:
                    270: *>
                    271: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    272: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    273: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    274: *>  of 2011 International Conference for High Performance Computing,
                    275: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    276: *>  Article 8 , 11 pages.
                    277: *>  http://doi.acm.org/10.1145/2063384.2063394
                    278: *>
                    279: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    280: *>  An improved parallel singular value algorithm and its implementation 
                    281: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    282: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    283: *>  Denver, Colorado, USA, 2013.
                    284: *>  Article 90, 12 pages.
                    285: *>  http://doi.acm.org/10.1145/2503210.2503292
                    286: *>
                    287: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    288: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    289: *>  calculations based on fine-grained memory aware tasks.
                    290: *>  International Journal of High Performance Computing Applications.
                    291: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    292: *>  http://hpc.sagepub.com/content/28/2/196 
                    293: *>
                    294: *> \endverbatim
                    295: *
                    296: *  =====================================================================
                    297:       SUBROUTINE DSYEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
                    298:      $                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
                    299:      $                          LWORK, IWORK, IFAIL, INFO )
                    300: *
                    301:       IMPLICIT NONE
                    302: *
1.5     ! bertrand  303: *  -- LAPACK driver routine --
1.1       bertrand  304: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    305: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    306: *
                    307: *     .. Scalar Arguments ..
                    308:       CHARACTER          JOBZ, RANGE, UPLO
                    309:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                    310:       DOUBLE PRECISION   ABSTOL, VL, VU
                    311: *     ..
                    312: *     .. Array Arguments ..
                    313:       INTEGER            IFAIL( * ), IWORK( * )
                    314:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
                    315: *     ..
                    316: *
                    317: * =====================================================================
                    318: *
                    319: *     .. Parameters ..
                    320:       DOUBLE PRECISION   ZERO, ONE
                    321:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    322: *     ..
                    323: *     .. Local Scalars ..
                    324:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    325:      $                   WANTZ
                    326:       CHARACTER          ORDER
                    327:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    328:      $                   INDISP, INDIWO, INDTAU, INDWKN, INDWRK, ISCALE,
                    329:      $                   ITMP1, J, JJ, LLWORK, LLWRKN,
                    330:      $                   NSPLIT, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
                    331:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    332:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    333: *     ..
                    334: *     .. External Functions ..
                    335:       LOGICAL            LSAME
1.3       bertrand  336:       INTEGER            ILAENV2STAGE
1.1       bertrand  337:       DOUBLE PRECISION   DLAMCH, DLANSY
1.3       bertrand  338:       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV2STAGE
1.1       bertrand  339: *     ..
                    340: *     .. External Subroutines ..
                    341:       EXTERNAL           DCOPY, DLACPY, DORGTR, DORMTR, DSCAL, DSTEBZ,
                    342:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA,
                    343:      $                   DSYTRD_2STAGE
                    344: *     ..
                    345: *     .. Intrinsic Functions ..
                    346:       INTRINSIC          MAX, MIN, SQRT
                    347: *     ..
                    348: *     .. Executable Statements ..
                    349: *
                    350: *     Test the input parameters.
                    351: *
                    352:       LOWER = LSAME( UPLO, 'L' )
                    353:       WANTZ = LSAME( JOBZ, 'V' )
                    354:       ALLEIG = LSAME( RANGE, 'A' )
                    355:       VALEIG = LSAME( RANGE, 'V' )
                    356:       INDEIG = LSAME( RANGE, 'I' )
                    357:       LQUERY = ( LWORK.EQ.-1 )
                    358: *
                    359:       INFO = 0
                    360:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    361:          INFO = -1
                    362:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    363:          INFO = -2
                    364:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    365:          INFO = -3
                    366:       ELSE IF( N.LT.0 ) THEN
                    367:          INFO = -4
                    368:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    369:          INFO = -6
                    370:       ELSE
                    371:          IF( VALEIG ) THEN
                    372:             IF( N.GT.0 .AND. VU.LE.VL )
                    373:      $         INFO = -8
                    374:          ELSE IF( INDEIG ) THEN
                    375:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    376:                INFO = -9
                    377:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    378:                INFO = -10
                    379:             END IF
                    380:          END IF
                    381:       END IF
                    382:       IF( INFO.EQ.0 ) THEN
                    383:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    384:             INFO = -15
                    385:          END IF
                    386:       END IF
                    387: *
                    388:       IF( INFO.EQ.0 ) THEN
                    389:          IF( N.LE.1 ) THEN
                    390:             LWMIN = 1
                    391:             WORK( 1 ) = LWMIN
                    392:          ELSE
1.3       bertrand  393:             KD    = ILAENV2STAGE( 1, 'DSYTRD_2STAGE', JOBZ,
                    394:      $                            N, -1, -1, -1 )
                    395:             IB    = ILAENV2STAGE( 2, 'DSYTRD_2STAGE', JOBZ,
                    396:      $                            N, KD, -1, -1 )
                    397:             LHTRD = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', JOBZ,
                    398:      $                            N, KD, IB, -1 )
                    399:             LWTRD = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', JOBZ,
                    400:      $                            N, KD, IB, -1 )
1.1       bertrand  401:             LWMIN = MAX( 8*N, 3*N + LHTRD + LWTRD )
                    402:             WORK( 1 )  = LWMIN
                    403:          END IF
                    404: *
                    405:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
                    406:      $      INFO = -17
                    407:       END IF
                    408: *
                    409:       IF( INFO.NE.0 ) THEN
                    410:          CALL XERBLA( 'DSYEVX_2STAGE', -INFO )
                    411:          RETURN
                    412:       ELSE IF( LQUERY ) THEN
                    413:          RETURN
                    414:       END IF
                    415: *
                    416: *     Quick return if possible
                    417: *
                    418:       M = 0
                    419:       IF( N.EQ.0 ) THEN
                    420:          RETURN
                    421:       END IF
                    422: *
                    423:       IF( N.EQ.1 ) THEN
                    424:          IF( ALLEIG .OR. INDEIG ) THEN
                    425:             M = 1
                    426:             W( 1 ) = A( 1, 1 )
                    427:          ELSE
                    428:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
                    429:                M = 1
                    430:                W( 1 ) = A( 1, 1 )
                    431:             END IF
                    432:          END IF
                    433:          IF( WANTZ )
                    434:      $      Z( 1, 1 ) = ONE
                    435:          RETURN
                    436:       END IF
                    437: *
                    438: *     Get machine constants.
                    439: *
                    440:       SAFMIN = DLAMCH( 'Safe minimum' )
                    441:       EPS    = DLAMCH( 'Precision' )
                    442:       SMLNUM = SAFMIN / EPS
                    443:       BIGNUM = ONE / SMLNUM
                    444:       RMIN   = SQRT( SMLNUM )
                    445:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    446: *
                    447: *     Scale matrix to allowable range, if necessary.
                    448: *
                    449:       ISCALE = 0
                    450:       ABSTLL = ABSTOL
                    451:       IF( VALEIG ) THEN
                    452:          VLL = VL
                    453:          VUU = VU
                    454:       END IF
                    455:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
                    456:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    457:          ISCALE = 1
                    458:          SIGMA = RMIN / ANRM
                    459:       ELSE IF( ANRM.GT.RMAX ) THEN
                    460:          ISCALE = 1
                    461:          SIGMA = RMAX / ANRM
                    462:       END IF
                    463:       IF( ISCALE.EQ.1 ) THEN
                    464:          IF( LOWER ) THEN
                    465:             DO 10 J = 1, N
                    466:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    467:    10       CONTINUE
                    468:          ELSE
                    469:             DO 20 J = 1, N
                    470:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
                    471:    20       CONTINUE
                    472:          END IF
                    473:          IF( ABSTOL.GT.0 )
                    474:      $      ABSTLL = ABSTOL*SIGMA
                    475:          IF( VALEIG ) THEN
                    476:             VLL = VL*SIGMA
                    477:             VUU = VU*SIGMA
                    478:          END IF
                    479:       END IF
                    480: *
                    481: *     Call DSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
                    482: *
                    483:       INDTAU  = 1
                    484:       INDE    = INDTAU + N
                    485:       INDD    = INDE + N
                    486:       INDHOUS = INDD + N
                    487:       INDWRK  = INDHOUS + LHTRD
                    488:       LLWORK  = LWORK - INDWRK + 1
                    489: *
                    490:       CALL DSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, WORK( INDD ), 
                    491:      $                    WORK( INDE ), WORK( INDTAU ), WORK( INDHOUS ),
                    492:      $                    LHTRD, WORK( INDWRK ), LLWORK, IINFO )
                    493: *
                    494: *     If all eigenvalues are desired and ABSTOL is less than or equal to
                    495: *     zero, then call DSTERF or DORGTR and SSTEQR.  If this fails for
                    496: *     some eigenvalue, then try DSTEBZ.
                    497: *
                    498:       TEST = .FALSE.
                    499:       IF( INDEIG ) THEN
                    500:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    501:             TEST = .TRUE.
                    502:          END IF
                    503:       END IF
                    504:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    505:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    506:          INDEE = INDWRK + 2*N
                    507:          IF( .NOT.WANTZ ) THEN
                    508:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    509:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    510:          ELSE
                    511:             CALL DLACPY( 'A', N, N, A, LDA, Z, LDZ )
                    512:             CALL DORGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
                    513:      $                   WORK( INDWRK ), LLWORK, IINFO )
                    514:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    515:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    516:      $                   WORK( INDWRK ), INFO )
                    517:             IF( INFO.EQ.0 ) THEN
                    518:                DO 30 I = 1, N
                    519:                   IFAIL( I ) = 0
                    520:    30          CONTINUE
                    521:             END IF
                    522:          END IF
                    523:          IF( INFO.EQ.0 ) THEN
                    524:             M = N
                    525:             GO TO 40
                    526:          END IF
                    527:          INFO = 0
                    528:       END IF
                    529: *
                    530: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    531: *
                    532:       IF( WANTZ ) THEN
                    533:          ORDER = 'B'
                    534:       ELSE
                    535:          ORDER = 'E'
                    536:       END IF
                    537:       INDIBL = 1
                    538:       INDISP = INDIBL + N
                    539:       INDIWO = INDISP + N
                    540:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    541:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    542:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    543:      $             IWORK( INDIWO ), INFO )
                    544: *
                    545:       IF( WANTZ ) THEN
                    546:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    547:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    548:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    549: *
                    550: *        Apply orthogonal matrix used in reduction to tridiagonal
                    551: *        form to eigenvectors returned by DSTEIN.
                    552: *
                    553:          INDWKN = INDE
                    554:          LLWRKN = LWORK - INDWKN + 1
                    555:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    556:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
                    557:       END IF
                    558: *
                    559: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    560: *
                    561:    40 CONTINUE
                    562:       IF( ISCALE.EQ.1 ) THEN
                    563:          IF( INFO.EQ.0 ) THEN
                    564:             IMAX = M
                    565:          ELSE
                    566:             IMAX = INFO - 1
                    567:          END IF
                    568:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    569:       END IF
                    570: *
                    571: *     If eigenvalues are not in order, then sort them, along with
                    572: *     eigenvectors.
                    573: *
                    574:       IF( WANTZ ) THEN
                    575:          DO 60 J = 1, M - 1
                    576:             I = 0
                    577:             TMP1 = W( J )
                    578:             DO 50 JJ = J + 1, M
                    579:                IF( W( JJ ).LT.TMP1 ) THEN
                    580:                   I = JJ
                    581:                   TMP1 = W( JJ )
                    582:                END IF
                    583:    50       CONTINUE
                    584: *
                    585:             IF( I.NE.0 ) THEN
                    586:                ITMP1 = IWORK( INDIBL+I-1 )
                    587:                W( I ) = W( J )
                    588:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    589:                W( J ) = TMP1
                    590:                IWORK( INDIBL+J-1 ) = ITMP1
                    591:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    592:                IF( INFO.NE.0 ) THEN
                    593:                   ITMP1 = IFAIL( I )
                    594:                   IFAIL( I ) = IFAIL( J )
                    595:                   IFAIL( J ) = ITMP1
                    596:                END IF
                    597:             END IF
                    598:    60    CONTINUE
                    599:       END IF
                    600: *
                    601: *     Set WORK(1) to optimal workspace size.
                    602: *
                    603:       WORK( 1 ) = LWMIN
                    604: *
                    605:       RETURN
                    606: *
                    607: *     End of DSYEVX_2STAGE
                    608: *
                    609:       END

CVSweb interface <joel.bertrand@systella.fr>