File:  [local] / rpl / lapack / lapack / dsyevx.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:25 2010 UTC (14 years, 1 month ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
    2:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
    3:      $                   IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DSYEVX computes selected eigenvalues and, optionally, eigenvectors
   24: *  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
   25: *  selected by specifying either a range of values or a range of indices
   26: *  for the desired eigenvalues.
   27: *
   28: *  Arguments
   29: *  =========
   30: *
   31: *  JOBZ    (input) CHARACTER*1
   32: *          = 'N':  Compute eigenvalues only;
   33: *          = 'V':  Compute eigenvalues and eigenvectors.
   34: *
   35: *  RANGE   (input) CHARACTER*1
   36: *          = 'A': all eigenvalues will be found.
   37: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   38: *                 will be found.
   39: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   40: *
   41: *  UPLO    (input) CHARACTER*1
   42: *          = 'U':  Upper triangle of A is stored;
   43: *          = 'L':  Lower triangle of A is stored.
   44: *
   45: *  N       (input) INTEGER
   46: *          The order of the matrix A.  N >= 0.
   47: *
   48: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
   49: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
   50: *          leading N-by-N upper triangular part of A contains the
   51: *          upper triangular part of the matrix A.  If UPLO = 'L',
   52: *          the leading N-by-N lower triangular part of A contains
   53: *          the lower triangular part of the matrix A.
   54: *          On exit, the lower triangle (if UPLO='L') or the upper
   55: *          triangle (if UPLO='U') of A, including the diagonal, is
   56: *          destroyed.
   57: *
   58: *  LDA     (input) INTEGER
   59: *          The leading dimension of the array A.  LDA >= max(1,N).
   60: *
   61: *  VL      (input) DOUBLE PRECISION
   62: *  VU      (input) DOUBLE PRECISION
   63: *          If RANGE='V', the lower and upper bounds of the interval to
   64: *          be searched for eigenvalues. VL < VU.
   65: *          Not referenced if RANGE = 'A' or 'I'.
   66: *
   67: *  IL      (input) INTEGER
   68: *  IU      (input) INTEGER
   69: *          If RANGE='I', the indices (in ascending order) of the
   70: *          smallest and largest eigenvalues to be returned.
   71: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   72: *          Not referenced if RANGE = 'A' or 'V'.
   73: *
   74: *  ABSTOL  (input) DOUBLE PRECISION
   75: *          The absolute error tolerance for the eigenvalues.
   76: *          An approximate eigenvalue is accepted as converged
   77: *          when it is determined to lie in an interval [a,b]
   78: *          of width less than or equal to
   79: *
   80: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
   81: *
   82: *          where EPS is the machine precision.  If ABSTOL is less than
   83: *          or equal to zero, then  EPS*|T|  will be used in its place,
   84: *          where |T| is the 1-norm of the tridiagonal matrix obtained
   85: *          by reducing A to tridiagonal form.
   86: *
   87: *          Eigenvalues will be computed most accurately when ABSTOL is
   88: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
   89: *          If this routine returns with INFO>0, indicating that some
   90: *          eigenvectors did not converge, try setting ABSTOL to
   91: *          2*DLAMCH('S').
   92: *
   93: *          See "Computing Small Singular Values of Bidiagonal Matrices
   94: *          with Guaranteed High Relative Accuracy," by Demmel and
   95: *          Kahan, LAPACK Working Note #3.
   96: *
   97: *  M       (output) INTEGER
   98: *          The total number of eigenvalues found.  0 <= M <= N.
   99: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  100: *
  101: *  W       (output) DOUBLE PRECISION array, dimension (N)
  102: *          On normal exit, the first M elements contain the selected
  103: *          eigenvalues in ascending order.
  104: *
  105: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  106: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  107: *          contain the orthonormal eigenvectors of the matrix A
  108: *          corresponding to the selected eigenvalues, with the i-th
  109: *          column of Z holding the eigenvector associated with W(i).
  110: *          If an eigenvector fails to converge, then that column of Z
  111: *          contains the latest approximation to the eigenvector, and the
  112: *          index of the eigenvector is returned in IFAIL.
  113: *          If JOBZ = 'N', then Z is not referenced.
  114: *          Note: the user must ensure that at least max(1,M) columns are
  115: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  116: *          is not known in advance and an upper bound must be used.
  117: *
  118: *  LDZ     (input) INTEGER
  119: *          The leading dimension of the array Z.  LDZ >= 1, and if
  120: *          JOBZ = 'V', LDZ >= max(1,N).
  121: *
  122: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  123: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  124: *
  125: *  LWORK   (input) INTEGER
  126: *          The length of the array WORK.  LWORK >= 1, when N <= 1;
  127: *          otherwise 8*N.
  128: *          For optimal efficiency, LWORK >= (NB+3)*N,
  129: *          where NB is the max of the blocksize for DSYTRD and DORMTR
  130: *          returned by ILAENV.
  131: *
  132: *          If LWORK = -1, then a workspace query is assumed; the routine
  133: *          only calculates the optimal size of the WORK array, returns
  134: *          this value as the first entry of the WORK array, and no error
  135: *          message related to LWORK is issued by XERBLA.
  136: *
  137: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  138: *
  139: *  IFAIL   (output) INTEGER array, dimension (N)
  140: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  141: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  142: *          indices of the eigenvectors that failed to converge.
  143: *          If JOBZ = 'N', then IFAIL is not referenced.
  144: *
  145: *  INFO    (output) INTEGER
  146: *          = 0:  successful exit
  147: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  148: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
  149: *                Their indices are stored in array IFAIL.
  150: *
  151: * =====================================================================
  152: *
  153: *     .. Parameters ..
  154:       DOUBLE PRECISION   ZERO, ONE
  155:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  156: *     ..
  157: *     .. Local Scalars ..
  158:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  159:      $                   WANTZ
  160:       CHARACTER          ORDER
  161:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  162:      $                   INDISP, INDIWO, INDTAU, INDWKN, INDWRK, ISCALE,
  163:      $                   ITMP1, J, JJ, LLWORK, LLWRKN, LWKMIN,
  164:      $                   LWKOPT, NB, NSPLIT
  165:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  166:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  167: *     ..
  168: *     .. External Functions ..
  169:       LOGICAL            LSAME
  170:       INTEGER            ILAENV
  171:       DOUBLE PRECISION   DLAMCH, DLANSY
  172:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           DCOPY, DLACPY, DORGTR, DORMTR, DSCAL, DSTEBZ,
  176:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, DSYTRD, XERBLA
  177: *     ..
  178: *     .. Intrinsic Functions ..
  179:       INTRINSIC          MAX, MIN, SQRT
  180: *     ..
  181: *     .. Executable Statements ..
  182: *
  183: *     Test the input parameters.
  184: *
  185:       LOWER = LSAME( UPLO, 'L' )
  186:       WANTZ = LSAME( JOBZ, 'V' )
  187:       ALLEIG = LSAME( RANGE, 'A' )
  188:       VALEIG = LSAME( RANGE, 'V' )
  189:       INDEIG = LSAME( RANGE, 'I' )
  190:       LQUERY = ( LWORK.EQ.-1 )
  191: *
  192:       INFO = 0
  193:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  194:          INFO = -1
  195:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  196:          INFO = -2
  197:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  198:          INFO = -3
  199:       ELSE IF( N.LT.0 ) THEN
  200:          INFO = -4
  201:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  202:          INFO = -6
  203:       ELSE
  204:          IF( VALEIG ) THEN
  205:             IF( N.GT.0 .AND. VU.LE.VL )
  206:      $         INFO = -8
  207:          ELSE IF( INDEIG ) THEN
  208:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  209:                INFO = -9
  210:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  211:                INFO = -10
  212:             END IF
  213:          END IF
  214:       END IF
  215:       IF( INFO.EQ.0 ) THEN
  216:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  217:             INFO = -15
  218:          END IF
  219:       END IF
  220: *
  221:       IF( INFO.EQ.0 ) THEN
  222:          IF( N.LE.1 ) THEN
  223:             LWKMIN = 1
  224:             WORK( 1 ) = LWKMIN
  225:          ELSE
  226:             LWKMIN = 8*N
  227:             NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
  228:             NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
  229:             LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
  230:             WORK( 1 ) = LWKOPT
  231:          END IF
  232: *
  233:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  234:      $      INFO = -17
  235:       END IF
  236: *
  237:       IF( INFO.NE.0 ) THEN
  238:          CALL XERBLA( 'DSYEVX', -INFO )
  239:          RETURN
  240:       ELSE IF( LQUERY ) THEN
  241:          RETURN
  242:       END IF
  243: *
  244: *     Quick return if possible
  245: *
  246:       M = 0
  247:       IF( N.EQ.0 ) THEN
  248:          RETURN
  249:       END IF
  250: *
  251:       IF( N.EQ.1 ) THEN
  252:          IF( ALLEIG .OR. INDEIG ) THEN
  253:             M = 1
  254:             W( 1 ) = A( 1, 1 )
  255:          ELSE
  256:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
  257:                M = 1
  258:                W( 1 ) = A( 1, 1 )
  259:             END IF
  260:          END IF
  261:          IF( WANTZ )
  262:      $      Z( 1, 1 ) = ONE
  263:          RETURN
  264:       END IF
  265: *
  266: *     Get machine constants.
  267: *
  268:       SAFMIN = DLAMCH( 'Safe minimum' )
  269:       EPS = DLAMCH( 'Precision' )
  270:       SMLNUM = SAFMIN / EPS
  271:       BIGNUM = ONE / SMLNUM
  272:       RMIN = SQRT( SMLNUM )
  273:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  274: *
  275: *     Scale matrix to allowable range, if necessary.
  276: *
  277:       ISCALE = 0
  278:       ABSTLL = ABSTOL
  279:       IF( VALEIG ) THEN
  280:          VLL = VL
  281:          VUU = VU
  282:       END IF
  283:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  284:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  285:          ISCALE = 1
  286:          SIGMA = RMIN / ANRM
  287:       ELSE IF( ANRM.GT.RMAX ) THEN
  288:          ISCALE = 1
  289:          SIGMA = RMAX / ANRM
  290:       END IF
  291:       IF( ISCALE.EQ.1 ) THEN
  292:          IF( LOWER ) THEN
  293:             DO 10 J = 1, N
  294:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  295:    10       CONTINUE
  296:          ELSE
  297:             DO 20 J = 1, N
  298:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
  299:    20       CONTINUE
  300:          END IF
  301:          IF( ABSTOL.GT.0 )
  302:      $      ABSTLL = ABSTOL*SIGMA
  303:          IF( VALEIG ) THEN
  304:             VLL = VL*SIGMA
  305:             VUU = VU*SIGMA
  306:          END IF
  307:       END IF
  308: *
  309: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
  310: *
  311:       INDTAU = 1
  312:       INDE = INDTAU + N
  313:       INDD = INDE + N
  314:       INDWRK = INDD + N
  315:       LLWORK = LWORK - INDWRK + 1
  316:       CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
  317:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
  318: *
  319: *     If all eigenvalues are desired and ABSTOL is less than or equal to
  320: *     zero, then call DSTERF or DORGTR and SSTEQR.  If this fails for
  321: *     some eigenvalue, then try DSTEBZ.
  322: *
  323:       TEST = .FALSE.
  324:       IF( INDEIG ) THEN
  325:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  326:             TEST = .TRUE.
  327:          END IF
  328:       END IF
  329:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  330:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  331:          INDEE = INDWRK + 2*N
  332:          IF( .NOT.WANTZ ) THEN
  333:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  334:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  335:          ELSE
  336:             CALL DLACPY( 'A', N, N, A, LDA, Z, LDZ )
  337:             CALL DORGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  338:      $                   WORK( INDWRK ), LLWORK, IINFO )
  339:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  340:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  341:      $                   WORK( INDWRK ), INFO )
  342:             IF( INFO.EQ.0 ) THEN
  343:                DO 30 I = 1, N
  344:                   IFAIL( I ) = 0
  345:    30          CONTINUE
  346:             END IF
  347:          END IF
  348:          IF( INFO.EQ.0 ) THEN
  349:             M = N
  350:             GO TO 40
  351:          END IF
  352:          INFO = 0
  353:       END IF
  354: *
  355: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  356: *
  357:       IF( WANTZ ) THEN
  358:          ORDER = 'B'
  359:       ELSE
  360:          ORDER = 'E'
  361:       END IF
  362:       INDIBL = 1
  363:       INDISP = INDIBL + N
  364:       INDIWO = INDISP + N
  365:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  366:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  367:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  368:      $             IWORK( INDIWO ), INFO )
  369: *
  370:       IF( WANTZ ) THEN
  371:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  372:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  373:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  374: *
  375: *        Apply orthogonal matrix used in reduction to tridiagonal
  376: *        form to eigenvectors returned by DSTEIN.
  377: *
  378:          INDWKN = INDE
  379:          LLWRKN = LWORK - INDWKN + 1
  380:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  381:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  382:       END IF
  383: *
  384: *     If matrix was scaled, then rescale eigenvalues appropriately.
  385: *
  386:    40 CONTINUE
  387:       IF( ISCALE.EQ.1 ) THEN
  388:          IF( INFO.EQ.0 ) THEN
  389:             IMAX = M
  390:          ELSE
  391:             IMAX = INFO - 1
  392:          END IF
  393:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  394:       END IF
  395: *
  396: *     If eigenvalues are not in order, then sort them, along with
  397: *     eigenvectors.
  398: *
  399:       IF( WANTZ ) THEN
  400:          DO 60 J = 1, M - 1
  401:             I = 0
  402:             TMP1 = W( J )
  403:             DO 50 JJ = J + 1, M
  404:                IF( W( JJ ).LT.TMP1 ) THEN
  405:                   I = JJ
  406:                   TMP1 = W( JJ )
  407:                END IF
  408:    50       CONTINUE
  409: *
  410:             IF( I.NE.0 ) THEN
  411:                ITMP1 = IWORK( INDIBL+I-1 )
  412:                W( I ) = W( J )
  413:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  414:                W( J ) = TMP1
  415:                IWORK( INDIBL+J-1 ) = ITMP1
  416:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  417:                IF( INFO.NE.0 ) THEN
  418:                   ITMP1 = IFAIL( I )
  419:                   IFAIL( I ) = IFAIL( J )
  420:                   IFAIL( J ) = ITMP1
  421:                END IF
  422:             END IF
  423:    60    CONTINUE
  424:       END IF
  425: *
  426: *     Set WORK(1) to optimal workspace size.
  427: *
  428:       WORK( 1 ) = LWKOPT
  429: *
  430:       RETURN
  431: *
  432: *     End of DSYEVX
  433: *
  434:       END

CVSweb interface <joel.bertrand@systella.fr>