Annotation of rpl/lapack/lapack/dsyevx.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                      2:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
                      3:      $                   IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  DSYEVX computes selected eigenvalues and, optionally, eigenvectors
                     24: *  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
                     25: *  selected by specifying either a range of values or a range of indices
                     26: *  for the desired eigenvalues.
                     27: *
                     28: *  Arguments
                     29: *  =========
                     30: *
                     31: *  JOBZ    (input) CHARACTER*1
                     32: *          = 'N':  Compute eigenvalues only;
                     33: *          = 'V':  Compute eigenvalues and eigenvectors.
                     34: *
                     35: *  RANGE   (input) CHARACTER*1
                     36: *          = 'A': all eigenvalues will be found.
                     37: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     38: *                 will be found.
                     39: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     40: *
                     41: *  UPLO    (input) CHARACTER*1
                     42: *          = 'U':  Upper triangle of A is stored;
                     43: *          = 'L':  Lower triangle of A is stored.
                     44: *
                     45: *  N       (input) INTEGER
                     46: *          The order of the matrix A.  N >= 0.
                     47: *
                     48: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     49: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     50: *          leading N-by-N upper triangular part of A contains the
                     51: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     52: *          the leading N-by-N lower triangular part of A contains
                     53: *          the lower triangular part of the matrix A.
                     54: *          On exit, the lower triangle (if UPLO='L') or the upper
                     55: *          triangle (if UPLO='U') of A, including the diagonal, is
                     56: *          destroyed.
                     57: *
                     58: *  LDA     (input) INTEGER
                     59: *          The leading dimension of the array A.  LDA >= max(1,N).
                     60: *
                     61: *  VL      (input) DOUBLE PRECISION
                     62: *  VU      (input) DOUBLE PRECISION
                     63: *          If RANGE='V', the lower and upper bounds of the interval to
                     64: *          be searched for eigenvalues. VL < VU.
                     65: *          Not referenced if RANGE = 'A' or 'I'.
                     66: *
                     67: *  IL      (input) INTEGER
                     68: *  IU      (input) INTEGER
                     69: *          If RANGE='I', the indices (in ascending order) of the
                     70: *          smallest and largest eigenvalues to be returned.
                     71: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     72: *          Not referenced if RANGE = 'A' or 'V'.
                     73: *
                     74: *  ABSTOL  (input) DOUBLE PRECISION
                     75: *          The absolute error tolerance for the eigenvalues.
                     76: *          An approximate eigenvalue is accepted as converged
                     77: *          when it is determined to lie in an interval [a,b]
                     78: *          of width less than or equal to
                     79: *
                     80: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                     81: *
                     82: *          where EPS is the machine precision.  If ABSTOL is less than
                     83: *          or equal to zero, then  EPS*|T|  will be used in its place,
                     84: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                     85: *          by reducing A to tridiagonal form.
                     86: *
                     87: *          Eigenvalues will be computed most accurately when ABSTOL is
                     88: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                     89: *          If this routine returns with INFO>0, indicating that some
                     90: *          eigenvectors did not converge, try setting ABSTOL to
                     91: *          2*DLAMCH('S').
                     92: *
                     93: *          See "Computing Small Singular Values of Bidiagonal Matrices
                     94: *          with Guaranteed High Relative Accuracy," by Demmel and
                     95: *          Kahan, LAPACK Working Note #3.
                     96: *
                     97: *  M       (output) INTEGER
                     98: *          The total number of eigenvalues found.  0 <= M <= N.
                     99: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    100: *
                    101: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    102: *          On normal exit, the first M elements contain the selected
                    103: *          eigenvalues in ascending order.
                    104: *
                    105: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    106: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    107: *          contain the orthonormal eigenvectors of the matrix A
                    108: *          corresponding to the selected eigenvalues, with the i-th
                    109: *          column of Z holding the eigenvector associated with W(i).
                    110: *          If an eigenvector fails to converge, then that column of Z
                    111: *          contains the latest approximation to the eigenvector, and the
                    112: *          index of the eigenvector is returned in IFAIL.
                    113: *          If JOBZ = 'N', then Z is not referenced.
                    114: *          Note: the user must ensure that at least max(1,M) columns are
                    115: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    116: *          is not known in advance and an upper bound must be used.
                    117: *
                    118: *  LDZ     (input) INTEGER
                    119: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    120: *          JOBZ = 'V', LDZ >= max(1,N).
                    121: *
                    122: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    123: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    124: *
                    125: *  LWORK   (input) INTEGER
                    126: *          The length of the array WORK.  LWORK >= 1, when N <= 1;
                    127: *          otherwise 8*N.
                    128: *          For optimal efficiency, LWORK >= (NB+3)*N,
                    129: *          where NB is the max of the blocksize for DSYTRD and DORMTR
                    130: *          returned by ILAENV.
                    131: *
                    132: *          If LWORK = -1, then a workspace query is assumed; the routine
                    133: *          only calculates the optimal size of the WORK array, returns
                    134: *          this value as the first entry of the WORK array, and no error
                    135: *          message related to LWORK is issued by XERBLA.
                    136: *
                    137: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    138: *
                    139: *  IFAIL   (output) INTEGER array, dimension (N)
                    140: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    141: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    142: *          indices of the eigenvectors that failed to converge.
                    143: *          If JOBZ = 'N', then IFAIL is not referenced.
                    144: *
                    145: *  INFO    (output) INTEGER
                    146: *          = 0:  successful exit
                    147: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    148: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    149: *                Their indices are stored in array IFAIL.
                    150: *
                    151: * =====================================================================
                    152: *
                    153: *     .. Parameters ..
                    154:       DOUBLE PRECISION   ZERO, ONE
                    155:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    156: *     ..
                    157: *     .. Local Scalars ..
                    158:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    159:      $                   WANTZ
                    160:       CHARACTER          ORDER
                    161:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    162:      $                   INDISP, INDIWO, INDTAU, INDWKN, INDWRK, ISCALE,
                    163:      $                   ITMP1, J, JJ, LLWORK, LLWRKN, LWKMIN,
                    164:      $                   LWKOPT, NB, NSPLIT
                    165:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    166:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    167: *     ..
                    168: *     .. External Functions ..
                    169:       LOGICAL            LSAME
                    170:       INTEGER            ILAENV
                    171:       DOUBLE PRECISION   DLAMCH, DLANSY
                    172:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
                    173: *     ..
                    174: *     .. External Subroutines ..
                    175:       EXTERNAL           DCOPY, DLACPY, DORGTR, DORMTR, DSCAL, DSTEBZ,
                    176:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, DSYTRD, XERBLA
                    177: *     ..
                    178: *     .. Intrinsic Functions ..
                    179:       INTRINSIC          MAX, MIN, SQRT
                    180: *     ..
                    181: *     .. Executable Statements ..
                    182: *
                    183: *     Test the input parameters.
                    184: *
                    185:       LOWER = LSAME( UPLO, 'L' )
                    186:       WANTZ = LSAME( JOBZ, 'V' )
                    187:       ALLEIG = LSAME( RANGE, 'A' )
                    188:       VALEIG = LSAME( RANGE, 'V' )
                    189:       INDEIG = LSAME( RANGE, 'I' )
                    190:       LQUERY = ( LWORK.EQ.-1 )
                    191: *
                    192:       INFO = 0
                    193:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    194:          INFO = -1
                    195:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    196:          INFO = -2
                    197:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    198:          INFO = -3
                    199:       ELSE IF( N.LT.0 ) THEN
                    200:          INFO = -4
                    201:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    202:          INFO = -6
                    203:       ELSE
                    204:          IF( VALEIG ) THEN
                    205:             IF( N.GT.0 .AND. VU.LE.VL )
                    206:      $         INFO = -8
                    207:          ELSE IF( INDEIG ) THEN
                    208:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    209:                INFO = -9
                    210:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    211:                INFO = -10
                    212:             END IF
                    213:          END IF
                    214:       END IF
                    215:       IF( INFO.EQ.0 ) THEN
                    216:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    217:             INFO = -15
                    218:          END IF
                    219:       END IF
                    220: *
                    221:       IF( INFO.EQ.0 ) THEN
                    222:          IF( N.LE.1 ) THEN
                    223:             LWKMIN = 1
                    224:             WORK( 1 ) = LWKMIN
                    225:          ELSE
                    226:             LWKMIN = 8*N
                    227:             NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
                    228:             NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
                    229:             LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
                    230:             WORK( 1 ) = LWKOPT
                    231:          END IF
                    232: *
                    233:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
                    234:      $      INFO = -17
                    235:       END IF
                    236: *
                    237:       IF( INFO.NE.0 ) THEN
                    238:          CALL XERBLA( 'DSYEVX', -INFO )
                    239:          RETURN
                    240:       ELSE IF( LQUERY ) THEN
                    241:          RETURN
                    242:       END IF
                    243: *
                    244: *     Quick return if possible
                    245: *
                    246:       M = 0
                    247:       IF( N.EQ.0 ) THEN
                    248:          RETURN
                    249:       END IF
                    250: *
                    251:       IF( N.EQ.1 ) THEN
                    252:          IF( ALLEIG .OR. INDEIG ) THEN
                    253:             M = 1
                    254:             W( 1 ) = A( 1, 1 )
                    255:          ELSE
                    256:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
                    257:                M = 1
                    258:                W( 1 ) = A( 1, 1 )
                    259:             END IF
                    260:          END IF
                    261:          IF( WANTZ )
                    262:      $      Z( 1, 1 ) = ONE
                    263:          RETURN
                    264:       END IF
                    265: *
                    266: *     Get machine constants.
                    267: *
                    268:       SAFMIN = DLAMCH( 'Safe minimum' )
                    269:       EPS = DLAMCH( 'Precision' )
                    270:       SMLNUM = SAFMIN / EPS
                    271:       BIGNUM = ONE / SMLNUM
                    272:       RMIN = SQRT( SMLNUM )
                    273:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    274: *
                    275: *     Scale matrix to allowable range, if necessary.
                    276: *
                    277:       ISCALE = 0
                    278:       ABSTLL = ABSTOL
                    279:       IF( VALEIG ) THEN
                    280:          VLL = VL
                    281:          VUU = VU
                    282:       END IF
                    283:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
                    284:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    285:          ISCALE = 1
                    286:          SIGMA = RMIN / ANRM
                    287:       ELSE IF( ANRM.GT.RMAX ) THEN
                    288:          ISCALE = 1
                    289:          SIGMA = RMAX / ANRM
                    290:       END IF
                    291:       IF( ISCALE.EQ.1 ) THEN
                    292:          IF( LOWER ) THEN
                    293:             DO 10 J = 1, N
                    294:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    295:    10       CONTINUE
                    296:          ELSE
                    297:             DO 20 J = 1, N
                    298:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
                    299:    20       CONTINUE
                    300:          END IF
                    301:          IF( ABSTOL.GT.0 )
                    302:      $      ABSTLL = ABSTOL*SIGMA
                    303:          IF( VALEIG ) THEN
                    304:             VLL = VL*SIGMA
                    305:             VUU = VU*SIGMA
                    306:          END IF
                    307:       END IF
                    308: *
                    309: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
                    310: *
                    311:       INDTAU = 1
                    312:       INDE = INDTAU + N
                    313:       INDD = INDE + N
                    314:       INDWRK = INDD + N
                    315:       LLWORK = LWORK - INDWRK + 1
                    316:       CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
                    317:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
                    318: *
                    319: *     If all eigenvalues are desired and ABSTOL is less than or equal to
                    320: *     zero, then call DSTERF or DORGTR and SSTEQR.  If this fails for
                    321: *     some eigenvalue, then try DSTEBZ.
                    322: *
                    323:       TEST = .FALSE.
                    324:       IF( INDEIG ) THEN
                    325:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    326:             TEST = .TRUE.
                    327:          END IF
                    328:       END IF
                    329:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    330:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    331:          INDEE = INDWRK + 2*N
                    332:          IF( .NOT.WANTZ ) THEN
                    333:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    334:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    335:          ELSE
                    336:             CALL DLACPY( 'A', N, N, A, LDA, Z, LDZ )
                    337:             CALL DORGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
                    338:      $                   WORK( INDWRK ), LLWORK, IINFO )
                    339:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    340:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    341:      $                   WORK( INDWRK ), INFO )
                    342:             IF( INFO.EQ.0 ) THEN
                    343:                DO 30 I = 1, N
                    344:                   IFAIL( I ) = 0
                    345:    30          CONTINUE
                    346:             END IF
                    347:          END IF
                    348:          IF( INFO.EQ.0 ) THEN
                    349:             M = N
                    350:             GO TO 40
                    351:          END IF
                    352:          INFO = 0
                    353:       END IF
                    354: *
                    355: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    356: *
                    357:       IF( WANTZ ) THEN
                    358:          ORDER = 'B'
                    359:       ELSE
                    360:          ORDER = 'E'
                    361:       END IF
                    362:       INDIBL = 1
                    363:       INDISP = INDIBL + N
                    364:       INDIWO = INDISP + N
                    365:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    366:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    367:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    368:      $             IWORK( INDIWO ), INFO )
                    369: *
                    370:       IF( WANTZ ) THEN
                    371:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    372:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    373:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    374: *
                    375: *        Apply orthogonal matrix used in reduction to tridiagonal
                    376: *        form to eigenvectors returned by DSTEIN.
                    377: *
                    378:          INDWKN = INDE
                    379:          LLWRKN = LWORK - INDWKN + 1
                    380:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    381:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
                    382:       END IF
                    383: *
                    384: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    385: *
                    386:    40 CONTINUE
                    387:       IF( ISCALE.EQ.1 ) THEN
                    388:          IF( INFO.EQ.0 ) THEN
                    389:             IMAX = M
                    390:          ELSE
                    391:             IMAX = INFO - 1
                    392:          END IF
                    393:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    394:       END IF
                    395: *
                    396: *     If eigenvalues are not in order, then sort them, along with
                    397: *     eigenvectors.
                    398: *
                    399:       IF( WANTZ ) THEN
                    400:          DO 60 J = 1, M - 1
                    401:             I = 0
                    402:             TMP1 = W( J )
                    403:             DO 50 JJ = J + 1, M
                    404:                IF( W( JJ ).LT.TMP1 ) THEN
                    405:                   I = JJ
                    406:                   TMP1 = W( JJ )
                    407:                END IF
                    408:    50       CONTINUE
                    409: *
                    410:             IF( I.NE.0 ) THEN
                    411:                ITMP1 = IWORK( INDIBL+I-1 )
                    412:                W( I ) = W( J )
                    413:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    414:                W( J ) = TMP1
                    415:                IWORK( INDIBL+J-1 ) = ITMP1
                    416:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    417:                IF( INFO.NE.0 ) THEN
                    418:                   ITMP1 = IFAIL( I )
                    419:                   IFAIL( I ) = IFAIL( J )
                    420:                   IFAIL( J ) = ITMP1
                    421:                END IF
                    422:             END IF
                    423:    60    CONTINUE
                    424:       END IF
                    425: *
                    426: *     Set WORK(1) to optimal workspace size.
                    427: *
                    428:       WORK( 1 ) = LWKOPT
                    429: *
                    430:       RETURN
                    431: *
                    432: *     End of DSYEVX
                    433: *
                    434:       END

CVSweb interface <joel.bertrand@systella.fr>