Annotation of rpl/lapack/lapack/dsyevx.f, revision 1.18

1.8       bertrand    1: *> \brief <b> DSYEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DSYEVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevx.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                     22: *                          ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
                     23: *                          IFAIL, INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                     28: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IFAIL( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
                     33: *       ..
1.15      bertrand   34: *
1.8       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> DSYEVX computes selected eigenvalues and, optionally, eigenvectors
                     42: *> of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
                     43: *> selected by specifying either a range of values or a range of indices
                     44: *> for the desired eigenvalues.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] JOBZ
                     51: *> \verbatim
                     52: *>          JOBZ is CHARACTER*1
                     53: *>          = 'N':  Compute eigenvalues only;
                     54: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] RANGE
                     58: *> \verbatim
                     59: *>          RANGE is CHARACTER*1
                     60: *>          = 'A': all eigenvalues will be found.
                     61: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     62: *>                 will be found.
                     63: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] UPLO
                     67: *> \verbatim
                     68: *>          UPLO is CHARACTER*1
                     69: *>          = 'U':  Upper triangle of A is stored;
                     70: *>          = 'L':  Lower triangle of A is stored.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] N
                     74: *> \verbatim
                     75: *>          N is INTEGER
                     76: *>          The order of the matrix A.  N >= 0.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in,out] A
                     80: *> \verbatim
                     81: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                     82: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     83: *>          leading N-by-N upper triangular part of A contains the
                     84: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     85: *>          the leading N-by-N lower triangular part of A contains
                     86: *>          the lower triangular part of the matrix A.
                     87: *>          On exit, the lower triangle (if UPLO='L') or the upper
                     88: *>          triangle (if UPLO='U') of A, including the diagonal, is
                     89: *>          destroyed.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] LDA
                     93: *> \verbatim
                     94: *>          LDA is INTEGER
                     95: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] VL
                     99: *> \verbatim
                    100: *>          VL is DOUBLE PRECISION
1.13      bertrand  101: *>          If RANGE='V', the lower bound of the interval to
                    102: *>          be searched for eigenvalues. VL < VU.
                    103: *>          Not referenced if RANGE = 'A' or 'I'.
1.8       bertrand  104: *> \endverbatim
                    105: *>
                    106: *> \param[in] VU
                    107: *> \verbatim
                    108: *>          VU is DOUBLE PRECISION
1.13      bertrand  109: *>          If RANGE='V', the upper bound of the interval to
1.8       bertrand  110: *>          be searched for eigenvalues. VL < VU.
                    111: *>          Not referenced if RANGE = 'A' or 'I'.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] IL
                    115: *> \verbatim
                    116: *>          IL is INTEGER
1.13      bertrand  117: *>          If RANGE='I', the index of the
                    118: *>          smallest eigenvalue to be returned.
                    119: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    120: *>          Not referenced if RANGE = 'A' or 'V'.
1.8       bertrand  121: *> \endverbatim
                    122: *>
                    123: *> \param[in] IU
                    124: *> \verbatim
                    125: *>          IU is INTEGER
1.13      bertrand  126: *>          If RANGE='I', the index of the
                    127: *>          largest eigenvalue to be returned.
1.8       bertrand  128: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    129: *>          Not referenced if RANGE = 'A' or 'V'.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] ABSTOL
                    133: *> \verbatim
                    134: *>          ABSTOL is DOUBLE PRECISION
                    135: *>          The absolute error tolerance for the eigenvalues.
                    136: *>          An approximate eigenvalue is accepted as converged
                    137: *>          when it is determined to lie in an interval [a,b]
                    138: *>          of width less than or equal to
                    139: *>
                    140: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    141: *>
                    142: *>          where EPS is the machine precision.  If ABSTOL is less than
                    143: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    144: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    145: *>          by reducing A to tridiagonal form.
                    146: *>
                    147: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    148: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    149: *>          If this routine returns with INFO>0, indicating that some
                    150: *>          eigenvectors did not converge, try setting ABSTOL to
                    151: *>          2*DLAMCH('S').
                    152: *>
                    153: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    154: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    155: *>          Kahan, LAPACK Working Note #3.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] M
                    159: *> \verbatim
                    160: *>          M is INTEGER
                    161: *>          The total number of eigenvalues found.  0 <= M <= N.
                    162: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[out] W
                    166: *> \verbatim
                    167: *>          W is DOUBLE PRECISION array, dimension (N)
                    168: *>          On normal exit, the first M elements contain the selected
                    169: *>          eigenvalues in ascending order.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] Z
                    173: *> \verbatim
                    174: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    175: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    176: *>          contain the orthonormal eigenvectors of the matrix A
                    177: *>          corresponding to the selected eigenvalues, with the i-th
                    178: *>          column of Z holding the eigenvector associated with W(i).
                    179: *>          If an eigenvector fails to converge, then that column of Z
                    180: *>          contains the latest approximation to the eigenvector, and the
                    181: *>          index of the eigenvector is returned in IFAIL.
                    182: *>          If JOBZ = 'N', then Z is not referenced.
                    183: *>          Note: the user must ensure that at least max(1,M) columns are
                    184: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    185: *>          is not known in advance and an upper bound must be used.
                    186: *> \endverbatim
                    187: *>
                    188: *> \param[in] LDZ
                    189: *> \verbatim
                    190: *>          LDZ is INTEGER
                    191: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    192: *>          JOBZ = 'V', LDZ >= max(1,N).
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[out] WORK
                    196: *> \verbatim
                    197: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    198: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    199: *> \endverbatim
                    200: *>
                    201: *> \param[in] LWORK
                    202: *> \verbatim
                    203: *>          LWORK is INTEGER
                    204: *>          The length of the array WORK.  LWORK >= 1, when N <= 1;
                    205: *>          otherwise 8*N.
                    206: *>          For optimal efficiency, LWORK >= (NB+3)*N,
                    207: *>          where NB is the max of the blocksize for DSYTRD and DORMTR
                    208: *>          returned by ILAENV.
                    209: *>
                    210: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    211: *>          only calculates the optimal size of the WORK array, returns
                    212: *>          this value as the first entry of the WORK array, and no error
                    213: *>          message related to LWORK is issued by XERBLA.
                    214: *> \endverbatim
                    215: *>
                    216: *> \param[out] IWORK
                    217: *> \verbatim
                    218: *>          IWORK is INTEGER array, dimension (5*N)
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[out] IFAIL
                    222: *> \verbatim
                    223: *>          IFAIL is INTEGER array, dimension (N)
                    224: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    225: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    226: *>          indices of the eigenvectors that failed to converge.
                    227: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    228: *> \endverbatim
                    229: *>
                    230: *> \param[out] INFO
                    231: *> \verbatim
                    232: *>          INFO is INTEGER
                    233: *>          = 0:  successful exit
                    234: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    235: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    236: *>                Their indices are stored in array IFAIL.
                    237: *> \endverbatim
                    238: *
                    239: *  Authors:
                    240: *  ========
                    241: *
1.15      bertrand  242: *> \author Univ. of Tennessee
                    243: *> \author Univ. of California Berkeley
                    244: *> \author Univ. of Colorado Denver
                    245: *> \author NAG Ltd.
1.8       bertrand  246: *
                    247: *> \ingroup doubleSYeigen
                    248: *
                    249: *  =====================================================================
1.1       bertrand  250:       SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                    251:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
                    252:      $                   IFAIL, INFO )
                    253: *
1.18    ! bertrand  254: *  -- LAPACK driver routine --
1.1       bertrand  255: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    256: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    257: *
                    258: *     .. Scalar Arguments ..
                    259:       CHARACTER          JOBZ, RANGE, UPLO
                    260:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                    261:       DOUBLE PRECISION   ABSTOL, VL, VU
                    262: *     ..
                    263: *     .. Array Arguments ..
                    264:       INTEGER            IFAIL( * ), IWORK( * )
                    265:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
                    266: *     ..
                    267: *
                    268: * =====================================================================
                    269: *
                    270: *     .. Parameters ..
                    271:       DOUBLE PRECISION   ZERO, ONE
                    272:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    273: *     ..
                    274: *     .. Local Scalars ..
                    275:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    276:      $                   WANTZ
                    277:       CHARACTER          ORDER
                    278:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    279:      $                   INDISP, INDIWO, INDTAU, INDWKN, INDWRK, ISCALE,
                    280:      $                   ITMP1, J, JJ, LLWORK, LLWRKN, LWKMIN,
                    281:      $                   LWKOPT, NB, NSPLIT
                    282:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    283:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    284: *     ..
                    285: *     .. External Functions ..
                    286:       LOGICAL            LSAME
                    287:       INTEGER            ILAENV
                    288:       DOUBLE PRECISION   DLAMCH, DLANSY
                    289:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
                    290: *     ..
                    291: *     .. External Subroutines ..
                    292:       EXTERNAL           DCOPY, DLACPY, DORGTR, DORMTR, DSCAL, DSTEBZ,
                    293:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, DSYTRD, XERBLA
                    294: *     ..
                    295: *     .. Intrinsic Functions ..
                    296:       INTRINSIC          MAX, MIN, SQRT
                    297: *     ..
                    298: *     .. Executable Statements ..
                    299: *
                    300: *     Test the input parameters.
                    301: *
                    302:       LOWER = LSAME( UPLO, 'L' )
                    303:       WANTZ = LSAME( JOBZ, 'V' )
                    304:       ALLEIG = LSAME( RANGE, 'A' )
                    305:       VALEIG = LSAME( RANGE, 'V' )
                    306:       INDEIG = LSAME( RANGE, 'I' )
                    307:       LQUERY = ( LWORK.EQ.-1 )
                    308: *
                    309:       INFO = 0
                    310:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    311:          INFO = -1
                    312:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    313:          INFO = -2
                    314:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    315:          INFO = -3
                    316:       ELSE IF( N.LT.0 ) THEN
                    317:          INFO = -4
                    318:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    319:          INFO = -6
                    320:       ELSE
                    321:          IF( VALEIG ) THEN
                    322:             IF( N.GT.0 .AND. VU.LE.VL )
                    323:      $         INFO = -8
                    324:          ELSE IF( INDEIG ) THEN
                    325:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    326:                INFO = -9
                    327:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    328:                INFO = -10
                    329:             END IF
                    330:          END IF
                    331:       END IF
                    332:       IF( INFO.EQ.0 ) THEN
                    333:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    334:             INFO = -15
                    335:          END IF
                    336:       END IF
                    337: *
                    338:       IF( INFO.EQ.0 ) THEN
                    339:          IF( N.LE.1 ) THEN
                    340:             LWKMIN = 1
                    341:             WORK( 1 ) = LWKMIN
                    342:          ELSE
                    343:             LWKMIN = 8*N
                    344:             NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
                    345:             NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
                    346:             LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
                    347:             WORK( 1 ) = LWKOPT
                    348:          END IF
                    349: *
                    350:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
                    351:      $      INFO = -17
                    352:       END IF
                    353: *
                    354:       IF( INFO.NE.0 ) THEN
                    355:          CALL XERBLA( 'DSYEVX', -INFO )
                    356:          RETURN
                    357:       ELSE IF( LQUERY ) THEN
                    358:          RETURN
                    359:       END IF
                    360: *
                    361: *     Quick return if possible
                    362: *
                    363:       M = 0
                    364:       IF( N.EQ.0 ) THEN
                    365:          RETURN
                    366:       END IF
                    367: *
                    368:       IF( N.EQ.1 ) THEN
                    369:          IF( ALLEIG .OR. INDEIG ) THEN
                    370:             M = 1
                    371:             W( 1 ) = A( 1, 1 )
                    372:          ELSE
                    373:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
                    374:                M = 1
                    375:                W( 1 ) = A( 1, 1 )
                    376:             END IF
                    377:          END IF
                    378:          IF( WANTZ )
                    379:      $      Z( 1, 1 ) = ONE
                    380:          RETURN
                    381:       END IF
                    382: *
                    383: *     Get machine constants.
                    384: *
                    385:       SAFMIN = DLAMCH( 'Safe minimum' )
                    386:       EPS = DLAMCH( 'Precision' )
                    387:       SMLNUM = SAFMIN / EPS
                    388:       BIGNUM = ONE / SMLNUM
                    389:       RMIN = SQRT( SMLNUM )
                    390:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    391: *
                    392: *     Scale matrix to allowable range, if necessary.
                    393: *
                    394:       ISCALE = 0
                    395:       ABSTLL = ABSTOL
                    396:       IF( VALEIG ) THEN
                    397:          VLL = VL
                    398:          VUU = VU
                    399:       END IF
                    400:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
                    401:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    402:          ISCALE = 1
                    403:          SIGMA = RMIN / ANRM
                    404:       ELSE IF( ANRM.GT.RMAX ) THEN
                    405:          ISCALE = 1
                    406:          SIGMA = RMAX / ANRM
                    407:       END IF
                    408:       IF( ISCALE.EQ.1 ) THEN
                    409:          IF( LOWER ) THEN
                    410:             DO 10 J = 1, N
                    411:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    412:    10       CONTINUE
                    413:          ELSE
                    414:             DO 20 J = 1, N
                    415:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
                    416:    20       CONTINUE
                    417:          END IF
                    418:          IF( ABSTOL.GT.0 )
                    419:      $      ABSTLL = ABSTOL*SIGMA
                    420:          IF( VALEIG ) THEN
                    421:             VLL = VL*SIGMA
                    422:             VUU = VU*SIGMA
                    423:          END IF
                    424:       END IF
                    425: *
                    426: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
                    427: *
                    428:       INDTAU = 1
                    429:       INDE = INDTAU + N
                    430:       INDD = INDE + N
                    431:       INDWRK = INDD + N
                    432:       LLWORK = LWORK - INDWRK + 1
                    433:       CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
                    434:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
                    435: *
                    436: *     If all eigenvalues are desired and ABSTOL is less than or equal to
                    437: *     zero, then call DSTERF or DORGTR and SSTEQR.  If this fails for
                    438: *     some eigenvalue, then try DSTEBZ.
                    439: *
                    440:       TEST = .FALSE.
                    441:       IF( INDEIG ) THEN
                    442:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    443:             TEST = .TRUE.
                    444:          END IF
                    445:       END IF
                    446:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    447:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    448:          INDEE = INDWRK + 2*N
                    449:          IF( .NOT.WANTZ ) THEN
                    450:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    451:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    452:          ELSE
                    453:             CALL DLACPY( 'A', N, N, A, LDA, Z, LDZ )
                    454:             CALL DORGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
                    455:      $                   WORK( INDWRK ), LLWORK, IINFO )
                    456:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    457:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    458:      $                   WORK( INDWRK ), INFO )
                    459:             IF( INFO.EQ.0 ) THEN
                    460:                DO 30 I = 1, N
                    461:                   IFAIL( I ) = 0
                    462:    30          CONTINUE
                    463:             END IF
                    464:          END IF
                    465:          IF( INFO.EQ.0 ) THEN
                    466:             M = N
                    467:             GO TO 40
                    468:          END IF
                    469:          INFO = 0
                    470:       END IF
                    471: *
                    472: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    473: *
                    474:       IF( WANTZ ) THEN
                    475:          ORDER = 'B'
                    476:       ELSE
                    477:          ORDER = 'E'
                    478:       END IF
                    479:       INDIBL = 1
                    480:       INDISP = INDIBL + N
                    481:       INDIWO = INDISP + N
                    482:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    483:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    484:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    485:      $             IWORK( INDIWO ), INFO )
                    486: *
                    487:       IF( WANTZ ) THEN
                    488:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    489:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    490:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    491: *
                    492: *        Apply orthogonal matrix used in reduction to tridiagonal
                    493: *        form to eigenvectors returned by DSTEIN.
                    494: *
                    495:          INDWKN = INDE
                    496:          LLWRKN = LWORK - INDWKN + 1
                    497:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    498:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
                    499:       END IF
                    500: *
                    501: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    502: *
                    503:    40 CONTINUE
                    504:       IF( ISCALE.EQ.1 ) THEN
                    505:          IF( INFO.EQ.0 ) THEN
                    506:             IMAX = M
                    507:          ELSE
                    508:             IMAX = INFO - 1
                    509:          END IF
                    510:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    511:       END IF
                    512: *
                    513: *     If eigenvalues are not in order, then sort them, along with
                    514: *     eigenvectors.
                    515: *
                    516:       IF( WANTZ ) THEN
                    517:          DO 60 J = 1, M - 1
                    518:             I = 0
                    519:             TMP1 = W( J )
                    520:             DO 50 JJ = J + 1, M
                    521:                IF( W( JJ ).LT.TMP1 ) THEN
                    522:                   I = JJ
                    523:                   TMP1 = W( JJ )
                    524:                END IF
                    525:    50       CONTINUE
                    526: *
                    527:             IF( I.NE.0 ) THEN
                    528:                ITMP1 = IWORK( INDIBL+I-1 )
                    529:                W( I ) = W( J )
                    530:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    531:                W( J ) = TMP1
                    532:                IWORK( INDIBL+J-1 ) = ITMP1
                    533:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    534:                IF( INFO.NE.0 ) THEN
                    535:                   ITMP1 = IFAIL( I )
                    536:                   IFAIL( I ) = IFAIL( J )
                    537:                   IFAIL( J ) = ITMP1
                    538:                END IF
                    539:             END IF
                    540:    60    CONTINUE
                    541:       END IF
                    542: *
                    543: *     Set WORK(1) to optimal workspace size.
                    544: *
                    545:       WORK( 1 ) = LWKOPT
                    546: *
                    547:       RETURN
                    548: *
                    549: *     End of DSYEVX
                    550: *
                    551:       END

CVSweb interface <joel.bertrand@systella.fr>