File:  [local] / rpl / lapack / lapack / dsyevr_2stage.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:08 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
    2: *
    3: *  @precisions fortran d -> s
    4: *
    5: *  =========== DOCUMENTATION ===========
    6: *
    7: * Online html documentation available at
    8: *            http://www.netlib.org/lapack/explore-html/
    9: *
   10: *> \htmlonly
   11: *> Download DSYEVR_2STAGE + dependencies
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevr_2stage.f">
   13: *> [TGZ]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevr_2stage.f">
   15: *> [ZIP]</a>
   16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevr_2stage.f">
   17: *> [TXT]</a>
   18: *> \endhtmlonly
   19: *
   20: *  Definition:
   21: *  ===========
   22: *
   23: *       SUBROUTINE DSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
   24: *                          IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK,
   25: *                          LWORK, IWORK, LIWORK, INFO )
   26: *
   27: *       IMPLICIT NONE
   28: *
   29: *       .. Scalar Arguments ..
   30: *       CHARACTER          JOBZ, RANGE, UPLO
   31: *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
   32: *       DOUBLE PRECISION   ABSTOL, VL, VU
   33: *       ..
   34: *       .. Array Arguments ..
   35: *       INTEGER            ISUPPZ( * ), IWORK( * )
   36: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DSYEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors
   46: *> of a real symmetric matrix A using the 2stage technique for
   47: *> the reduction to tridiagonal.  Eigenvalues and eigenvectors can be
   48: *> selected by specifying either a range of values or a range of
   49: *> indices for the desired eigenvalues.
   50: *>
   51: *> DSYEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call
   52: *> to DSYTRD.  Then, whenever possible, DSYEVR_2STAGE calls DSTEMR to compute
   53: *> the eigenspectrum using Relatively Robust Representations.  DSTEMR
   54: *> computes eigenvalues by the dqds algorithm, while orthogonal
   55: *> eigenvectors are computed from various "good" L D L^T representations
   56: *> (also known as Relatively Robust Representations). Gram-Schmidt
   57: *> orthogonalization is avoided as far as possible. More specifically,
   58: *> the various steps of the algorithm are as follows.
   59: *>
   60: *> For each unreduced block (submatrix) of T,
   61: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   62: *>        define all the wanted eigenvalues to high relative accuracy.
   63: *>        This means that small relative changes in the entries of D and L
   64: *>        cause only small relative changes in the eigenvalues and
   65: *>        eigenvectors. The standard (unfactored) representation of the
   66: *>        tridiagonal matrix T does not have this property in general.
   67: *>    (b) Compute the eigenvalues to suitable accuracy.
   68: *>        If the eigenvectors are desired, the algorithm attains full
   69: *>        accuracy of the computed eigenvalues only right before
   70: *>        the corresponding vectors have to be computed, see steps c) and d).
   71: *>    (c) For each cluster of close eigenvalues, select a new
   72: *>        shift close to the cluster, find a new factorization, and refine
   73: *>        the shifted eigenvalues to suitable accuracy.
   74: *>    (d) For each eigenvalue with a large enough relative separation compute
   75: *>        the corresponding eigenvector by forming a rank revealing twisted
   76: *>        factorization. Go back to (c) for any clusters that remain.
   77: *>
   78: *> The desired accuracy of the output can be specified by the input
   79: *> parameter ABSTOL.
   80: *>
   81: *> For more details, see DSTEMR's documentation and:
   82: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   83: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   84: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   85: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   86: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   87: *>   2004.  Also LAPACK Working Note 154.
   88: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   89: *>   tridiagonal eigenvalue/eigenvector problem",
   90: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   91: *>   UC Berkeley, May 1997.
   92: *>
   93: *>
   94: *> Note 1 : DSYEVR_2STAGE calls DSTEMR when the full spectrum is requested
   95: *> on machines which conform to the ieee-754 floating point standard.
   96: *> DSYEVR_2STAGE calls DSTEBZ and SSTEIN on non-ieee machines and
   97: *> when partial spectrum requests are made.
   98: *>
   99: *> Normal execution of DSTEMR may create NaNs and infinities and
  100: *> hence may abort due to a floating point exception in environments
  101: *> which do not handle NaNs and infinities in the ieee standard default
  102: *> manner.
  103: *> \endverbatim
  104: *
  105: *  Arguments:
  106: *  ==========
  107: *
  108: *> \param[in] JOBZ
  109: *> \verbatim
  110: *>          JOBZ is CHARACTER*1
  111: *>          = 'N':  Compute eigenvalues only;
  112: *>          = 'V':  Compute eigenvalues and eigenvectors.
  113: *>                  Not available in this release.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] RANGE
  117: *> \verbatim
  118: *>          RANGE is CHARACTER*1
  119: *>          = 'A': all eigenvalues will be found.
  120: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  121: *>                 will be found.
  122: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  123: *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
  124: *>          DSTEIN are called
  125: *> \endverbatim
  126: *>
  127: *> \param[in] UPLO
  128: *> \verbatim
  129: *>          UPLO is CHARACTER*1
  130: *>          = 'U':  Upper triangle of A is stored;
  131: *>          = 'L':  Lower triangle of A is stored.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] N
  135: *> \verbatim
  136: *>          N is INTEGER
  137: *>          The order of the matrix A.  N >= 0.
  138: *> \endverbatim
  139: *>
  140: *> \param[in,out] A
  141: *> \verbatim
  142: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
  143: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
  144: *>          leading N-by-N upper triangular part of A contains the
  145: *>          upper triangular part of the matrix A.  If UPLO = 'L',
  146: *>          the leading N-by-N lower triangular part of A contains
  147: *>          the lower triangular part of the matrix A.
  148: *>          On exit, the lower triangle (if UPLO='L') or the upper
  149: *>          triangle (if UPLO='U') of A, including the diagonal, is
  150: *>          destroyed.
  151: *> \endverbatim
  152: *>
  153: *> \param[in] LDA
  154: *> \verbatim
  155: *>          LDA is INTEGER
  156: *>          The leading dimension of the array A.  LDA >= max(1,N).
  157: *> \endverbatim
  158: *>
  159: *> \param[in] VL
  160: *> \verbatim
  161: *>          VL is DOUBLE PRECISION
  162: *>          If RANGE='V', the lower bound of the interval to
  163: *>          be searched for eigenvalues. VL < VU.
  164: *>          Not referenced if RANGE = 'A' or 'I'.
  165: *> \endverbatim
  166: *>
  167: *> \param[in] VU
  168: *> \verbatim
  169: *>          VU is DOUBLE PRECISION
  170: *>          If RANGE='V', the upper bound of the interval to
  171: *>          be searched for eigenvalues. VL < VU.
  172: *>          Not referenced if RANGE = 'A' or 'I'.
  173: *> \endverbatim
  174: *>
  175: *> \param[in] IL
  176: *> \verbatim
  177: *>          IL is INTEGER
  178: *>          If RANGE='I', the index of the
  179: *>          smallest eigenvalue to be returned.
  180: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  181: *>          Not referenced if RANGE = 'A' or 'V'.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] IU
  185: *> \verbatim
  186: *>          IU is INTEGER
  187: *>          If RANGE='I', the index of the
  188: *>          largest eigenvalue to be returned.
  189: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  190: *>          Not referenced if RANGE = 'A' or 'V'.
  191: *> \endverbatim
  192: *>
  193: *> \param[in] ABSTOL
  194: *> \verbatim
  195: *>          ABSTOL is DOUBLE PRECISION
  196: *>          The absolute error tolerance for the eigenvalues.
  197: *>          An approximate eigenvalue is accepted as converged
  198: *>          when it is determined to lie in an interval [a,b]
  199: *>          of width less than or equal to
  200: *>
  201: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  202: *>
  203: *>          where EPS is the machine precision.  If ABSTOL is less than
  204: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  205: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  206: *>          by reducing A to tridiagonal form.
  207: *>
  208: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  209: *>          with Guaranteed High Relative Accuracy," by Demmel and
  210: *>          Kahan, LAPACK Working Note #3.
  211: *>
  212: *>          If high relative accuracy is important, set ABSTOL to
  213: *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  214: *>          eigenvalues are computed to high relative accuracy when
  215: *>          possible in future releases.  The current code does not
  216: *>          make any guarantees about high relative accuracy, but
  217: *>          future releases will. See J. Barlow and J. Demmel,
  218: *>          "Computing Accurate Eigensystems of Scaled Diagonally
  219: *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
  220: *>          of which matrices define their eigenvalues to high relative
  221: *>          accuracy.
  222: *> \endverbatim
  223: *>
  224: *> \param[out] M
  225: *> \verbatim
  226: *>          M is INTEGER
  227: *>          The total number of eigenvalues found.  0 <= M <= N.
  228: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  229: *> \endverbatim
  230: *>
  231: *> \param[out] W
  232: *> \verbatim
  233: *>          W is DOUBLE PRECISION array, dimension (N)
  234: *>          The first M elements contain the selected eigenvalues in
  235: *>          ascending order.
  236: *> \endverbatim
  237: *>
  238: *> \param[out] Z
  239: *> \verbatim
  240: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  241: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  242: *>          contain the orthonormal eigenvectors of the matrix A
  243: *>          corresponding to the selected eigenvalues, with the i-th
  244: *>          column of Z holding the eigenvector associated with W(i).
  245: *>          If JOBZ = 'N', then Z is not referenced.
  246: *>          Note: the user must ensure that at least max(1,M) columns are
  247: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  248: *>          is not known in advance and an upper bound must be used.
  249: *>          Supplying N columns is always safe.
  250: *> \endverbatim
  251: *>
  252: *> \param[in] LDZ
  253: *> \verbatim
  254: *>          LDZ is INTEGER
  255: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  256: *>          JOBZ = 'V', LDZ >= max(1,N).
  257: *> \endverbatim
  258: *>
  259: *> \param[out] ISUPPZ
  260: *> \verbatim
  261: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  262: *>          The support of the eigenvectors in Z, i.e., the indices
  263: *>          indicating the nonzero elements in Z. The i-th eigenvector
  264: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  265: *>          ISUPPZ( 2*i ). This is an output of DSTEMR (tridiagonal
  266: *>          matrix). The support of the eigenvectors of A is typically 
  267: *>          1:N because of the orthogonal transformations applied by DORMTR.
  268: *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  269: *> \endverbatim
  270: *>
  271: *> \param[out] WORK
  272: *> \verbatim
  273: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  274: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  275: *> \endverbatim
  276: *>
  277: *> \param[in] LWORK
  278: *> \verbatim
  279: *>          LWORK is INTEGER
  280: *>          The dimension of the array WORK.  
  281: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
  282: *>                                   LWORK = MAX(1, 26*N, dimension) where
  283: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + 5*N
  284: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
  285: *>                                               + max(2*KD*KD, KD*NTHREADS) 
  286: *>                                               + (KD+1)*N + 5*N
  287: *>                                   where KD is the blocking size of the reduction,
  288: *>                                   FACTOPTNB is the blocking used by the QR or LQ
  289: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
  290: *>                                   NTHREADS is the number of threads used when
  291: *>                                   openMP compilation is enabled, otherwise =1.
  292: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
  293: *>
  294: *>          If LWORK = -1, then a workspace query is assumed; the routine
  295: *>          only calculates the optimal size of the WORK array, returns
  296: *>          this value as the first entry of the WORK array, and no error
  297: *>          message related to LWORK is issued by XERBLA.
  298: *> \endverbatim
  299: *>
  300: *> \param[out] IWORK
  301: *> \verbatim
  302: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  303: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
  304: *> \endverbatim
  305: *>
  306: *> \param[in] LIWORK
  307: *> \verbatim
  308: *>          LIWORK is INTEGER
  309: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  310: *>
  311: *>          If LIWORK = -1, then a workspace query is assumed; the
  312: *>          routine only calculates the optimal size of the IWORK array,
  313: *>          returns this value as the first entry of the IWORK array, and
  314: *>          no error message related to LIWORK is issued by XERBLA.
  315: *> \endverbatim
  316: *>
  317: *> \param[out] INFO
  318: *> \verbatim
  319: *>          INFO is INTEGER
  320: *>          = 0:  successful exit
  321: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  322: *>          > 0:  Internal error
  323: *> \endverbatim
  324: *
  325: *  Authors:
  326: *  ========
  327: *
  328: *> \author Univ. of Tennessee
  329: *> \author Univ. of California Berkeley
  330: *> \author Univ. of Colorado Denver
  331: *> \author NAG Ltd.
  332: *
  333: *> \ingroup doubleSYeigen
  334: *
  335: *> \par Contributors:
  336: *  ==================
  337: *>
  338: *>     Inderjit Dhillon, IBM Almaden, USA \n
  339: *>     Osni Marques, LBNL/NERSC, USA \n
  340: *>     Ken Stanley, Computer Science Division, University of
  341: *>       California at Berkeley, USA \n
  342: *>     Jason Riedy, Computer Science Division, University of
  343: *>       California at Berkeley, USA \n
  344: *>
  345: *> \par Further Details:
  346: *  =====================
  347: *>
  348: *> \verbatim
  349: *>
  350: *>  All details about the 2stage techniques are available in:
  351: *>
  352: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  353: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
  354: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
  355: *>  of 2011 International Conference for High Performance Computing,
  356: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  357: *>  Article 8 , 11 pages.
  358: *>  http://doi.acm.org/10.1145/2063384.2063394
  359: *>
  360: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  361: *>  An improved parallel singular value algorithm and its implementation 
  362: *>  for multicore hardware, In Proceedings of 2013 International Conference
  363: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  364: *>  Denver, Colorado, USA, 2013.
  365: *>  Article 90, 12 pages.
  366: *>  http://doi.acm.org/10.1145/2503210.2503292
  367: *>
  368: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  369: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  370: *>  calculations based on fine-grained memory aware tasks.
  371: *>  International Journal of High Performance Computing Applications.
  372: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
  373: *>  http://hpc.sagepub.com/content/28/2/196 
  374: *>
  375: *> \endverbatim
  376: *
  377: *  =====================================================================
  378:       SUBROUTINE DSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
  379:      $                   IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK,
  380:      $                   LWORK, IWORK, LIWORK, INFO )
  381: *
  382:       IMPLICIT NONE
  383: *
  384: *  -- LAPACK driver routine --
  385: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  386: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  387: *
  388: *     .. Scalar Arguments ..
  389:       CHARACTER          JOBZ, RANGE, UPLO
  390:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
  391:       DOUBLE PRECISION   ABSTOL, VL, VU
  392: *     ..
  393: *     .. Array Arguments ..
  394:       INTEGER            ISUPPZ( * ), IWORK( * )
  395:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
  396: *     ..
  397: *
  398: * =====================================================================
  399: *
  400: *     .. Parameters ..
  401:       DOUBLE PRECISION   ZERO, ONE, TWO
  402:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  403: *     ..
  404: *     .. Local Scalars ..
  405:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
  406:      $                   TRYRAC
  407:       CHARACTER          ORDER
  408:       INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
  409:      $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
  410:      $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
  411:      $                   LLWORK, LLWRKN, LWMIN, NSPLIT,
  412:      $                   LHTRD, LWTRD, KD, IB, INDHOUS
  413:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  414:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  415: *     ..
  416: *     .. External Functions ..
  417:       LOGICAL            LSAME
  418:       INTEGER            ILAENV, ILAENV2STAGE
  419:       DOUBLE PRECISION   DLAMCH, DLANSY
  420:       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV, ILAENV2STAGE
  421: *     ..
  422: *     .. External Subroutines ..
  423:       EXTERNAL           DCOPY, DORMTR, DSCAL, DSTEBZ, DSTEMR, DSTEIN,
  424:      $                   DSTERF, DSWAP, DSYTRD_2STAGE, XERBLA
  425: *     ..
  426: *     .. Intrinsic Functions ..
  427:       INTRINSIC          MAX, MIN, SQRT
  428: *     ..
  429: *     .. Executable Statements ..
  430: *
  431: *     Test the input parameters.
  432: *
  433:       IEEEOK = ILAENV( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
  434: *
  435:       LOWER = LSAME( UPLO, 'L' )
  436:       WANTZ = LSAME( JOBZ, 'V' )
  437:       ALLEIG = LSAME( RANGE, 'A' )
  438:       VALEIG = LSAME( RANGE, 'V' )
  439:       INDEIG = LSAME( RANGE, 'I' )
  440: *
  441:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
  442: *
  443:       KD     = ILAENV2STAGE( 1, 'DSYTRD_2STAGE', JOBZ, N, -1, -1, -1 )
  444:       IB     = ILAENV2STAGE( 2, 'DSYTRD_2STAGE', JOBZ, N, KD, -1, -1 )
  445:       LHTRD  = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
  446:       LWTRD  = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
  447:       LWMIN  = MAX( 26*N, 5*N + LHTRD + LWTRD )
  448:       LIWMIN = MAX( 1, 10*N )
  449: *
  450:       INFO = 0
  451:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
  452:          INFO = -1
  453:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  454:          INFO = -2
  455:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  456:          INFO = -3
  457:       ELSE IF( N.LT.0 ) THEN
  458:          INFO = -4
  459:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  460:          INFO = -6
  461:       ELSE
  462:          IF( VALEIG ) THEN
  463:             IF( N.GT.0 .AND. VU.LE.VL )
  464:      $         INFO = -8
  465:          ELSE IF( INDEIG ) THEN
  466:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  467:                INFO = -9
  468:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  469:                INFO = -10
  470:             END IF
  471:          END IF
  472:       END IF
  473:       IF( INFO.EQ.0 ) THEN
  474:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  475:             INFO = -15
  476:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  477:             INFO = -18
  478:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  479:             INFO = -20
  480:          END IF
  481:       END IF
  482: *
  483:       IF( INFO.EQ.0 ) THEN
  484: *         NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
  485: *         NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
  486: *         LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  487:          WORK( 1 ) = LWMIN
  488:          IWORK( 1 ) = LIWMIN
  489:       END IF
  490: *
  491:       IF( INFO.NE.0 ) THEN
  492:          CALL XERBLA( 'DSYEVR_2STAGE', -INFO )
  493:          RETURN
  494:       ELSE IF( LQUERY ) THEN
  495:          RETURN
  496:       END IF
  497: *
  498: *     Quick return if possible
  499: *
  500:       M = 0
  501:       IF( N.EQ.0 ) THEN
  502:          WORK( 1 ) = 1
  503:          RETURN
  504:       END IF
  505: *
  506:       IF( N.EQ.1 ) THEN
  507:          WORK( 1 ) = 7
  508:          IF( ALLEIG .OR. INDEIG ) THEN
  509:             M = 1
  510:             W( 1 ) = A( 1, 1 )
  511:          ELSE
  512:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
  513:                M = 1
  514:                W( 1 ) = A( 1, 1 )
  515:             END IF
  516:          END IF
  517:          IF( WANTZ ) THEN
  518:             Z( 1, 1 ) = ONE
  519:             ISUPPZ( 1 ) = 1
  520:             ISUPPZ( 2 ) = 1
  521:          END IF
  522:          RETURN
  523:       END IF
  524: *
  525: *     Get machine constants.
  526: *
  527:       SAFMIN = DLAMCH( 'Safe minimum' )
  528:       EPS    = DLAMCH( 'Precision' )
  529:       SMLNUM = SAFMIN / EPS
  530:       BIGNUM = ONE / SMLNUM
  531:       RMIN   = SQRT( SMLNUM )
  532:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  533: *
  534: *     Scale matrix to allowable range, if necessary.
  535: *
  536:       ISCALE = 0
  537:       ABSTLL = ABSTOL
  538:       IF (VALEIG) THEN
  539:          VLL = VL
  540:          VUU = VU
  541:       END IF
  542:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  543:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  544:          ISCALE = 1
  545:          SIGMA = RMIN / ANRM
  546:       ELSE IF( ANRM.GT.RMAX ) THEN
  547:          ISCALE = 1
  548:          SIGMA = RMAX / ANRM
  549:       END IF
  550:       IF( ISCALE.EQ.1 ) THEN
  551:          IF( LOWER ) THEN
  552:             DO 10 J = 1, N
  553:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  554:    10       CONTINUE
  555:          ELSE
  556:             DO 20 J = 1, N
  557:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
  558:    20       CONTINUE
  559:          END IF
  560:          IF( ABSTOL.GT.0 )
  561:      $      ABSTLL = ABSTOL*SIGMA
  562:          IF( VALEIG ) THEN
  563:             VLL = VL*SIGMA
  564:             VUU = VU*SIGMA
  565:          END IF
  566:       END IF
  567: 
  568: *     Initialize indices into workspaces.  Note: The IWORK indices are
  569: *     used only if DSTERF or DSTEMR fail.
  570: 
  571: *     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
  572: *     elementary reflectors used in DSYTRD.
  573:       INDTAU = 1
  574: *     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
  575:       INDD = INDTAU + N
  576: *     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
  577: *     tridiagonal matrix from DSYTRD.
  578:       INDE = INDD + N
  579: *     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
  580: *     -written by DSTEMR (the DSTERF path copies the diagonal to W).
  581:       INDDD = INDE + N
  582: *     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
  583: *     -written while computing the eigenvalues in DSTERF and DSTEMR.
  584:       INDEE = INDDD + N
  585: *     INDHOUS is the starting offset Householder storage of stage 2
  586:       INDHOUS = INDEE + N
  587: *     INDWK is the starting offset of the left-over workspace, and
  588: *     LLWORK is the remaining workspace size.
  589:       INDWK  = INDHOUS + LHTRD
  590:       LLWORK = LWORK - INDWK + 1
  591: 
  592: 
  593: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  594: *     stores the block indices of each of the M<=N eigenvalues.
  595:       INDIBL = 1
  596: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  597: *     stores the starting and finishing indices of each block.
  598:       INDISP = INDIBL + N
  599: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  600: *     that corresponding to eigenvectors that fail to converge in
  601: *     DSTEIN.  This information is discarded; if any fail, the driver
  602: *     returns INFO > 0.
  603:       INDIFL = INDISP + N
  604: *     INDIWO is the offset of the remaining integer workspace.
  605:       INDIWO = INDIFL + N
  606: 
  607: *
  608: *     Call DSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
  609: *
  610: *
  611:       CALL DSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, WORK( INDD ), 
  612:      $                    WORK( INDE ), WORK( INDTAU ), WORK( INDHOUS ),
  613:      $                    LHTRD, WORK( INDWK ), LLWORK, IINFO )
  614: *
  615: *     If all eigenvalues are desired
  616: *     then call DSTERF or DSTEMR and DORMTR.
  617: *
  618:       IF( ( ALLEIG .OR. ( INDEIG .AND. IL.EQ.1 .AND. IU.EQ.N ) ) .AND.
  619:      $    IEEEOK.EQ.1 ) THEN
  620:          IF( .NOT.WANTZ ) THEN
  621:             CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  622:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  623:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  624:          ELSE
  625:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  626:             CALL DCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
  627: *
  628:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  629:                TRYRAC = .TRUE.
  630:             ELSE
  631:                TRYRAC = .FALSE.
  632:             END IF
  633:             CALL DSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
  634:      $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
  635:      $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
  636:      $                   INFO )
  637: *
  638: *
  639: *
  640: *        Apply orthogonal matrix used in reduction to tridiagonal
  641: *        form to eigenvectors returned by DSTEMR.
  642: *
  643:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
  644:                INDWKN = INDE
  645:                LLWRKN = LWORK - INDWKN + 1
  646:                CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA,
  647:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  648:      $                      LLWRKN, IINFO )
  649:             END IF
  650:          END IF
  651: *
  652: *
  653:          IF( INFO.EQ.0 ) THEN
  654: *           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are
  655: *           undefined.
  656:             M = N
  657:             GO TO 30
  658:          END IF
  659:          INFO = 0
  660:       END IF
  661: *
  662: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
  663: *     Also call DSTEBZ and DSTEIN if DSTEMR fails.
  664: *
  665:       IF( WANTZ ) THEN
  666:          ORDER = 'B'
  667:       ELSE
  668:          ORDER = 'E'
  669:       END IF
  670: 
  671:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  672:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  673:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
  674:      $             IWORK( INDIWO ), INFO )
  675: *
  676:       IF( WANTZ ) THEN
  677:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  678:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  679:      $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  680:      $                INFO )
  681: *
  682: *        Apply orthogonal matrix used in reduction to tridiagonal
  683: *        form to eigenvectors returned by DSTEIN.
  684: *
  685:          INDWKN = INDE
  686:          LLWRKN = LWORK - INDWKN + 1
  687:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  688:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  689:       END IF
  690: *
  691: *     If matrix was scaled, then rescale eigenvalues appropriately.
  692: *
  693: *  Jump here if DSTEMR/DSTEIN succeeded.
  694:    30 CONTINUE
  695:       IF( ISCALE.EQ.1 ) THEN
  696:          IF( INFO.EQ.0 ) THEN
  697:             IMAX = M
  698:          ELSE
  699:             IMAX = INFO - 1
  700:          END IF
  701:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  702:       END IF
  703: *
  704: *     If eigenvalues are not in order, then sort them, along with
  705: *     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
  706: *     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
  707: *     not return this detailed information to the user.
  708: *
  709:       IF( WANTZ ) THEN
  710:          DO 50 J = 1, M - 1
  711:             I = 0
  712:             TMP1 = W( J )
  713:             DO 40 JJ = J + 1, M
  714:                IF( W( JJ ).LT.TMP1 ) THEN
  715:                   I = JJ
  716:                   TMP1 = W( JJ )
  717:                END IF
  718:    40       CONTINUE
  719: *
  720:             IF( I.NE.0 ) THEN
  721:                W( I ) = W( J )
  722:                W( J ) = TMP1
  723:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  724:             END IF
  725:    50    CONTINUE
  726:       END IF
  727: *
  728: *     Set WORK(1) to optimal workspace size.
  729: *
  730:       WORK( 1 ) = LWMIN
  731:       IWORK( 1 ) = LIWMIN
  732: *
  733:       RETURN
  734: *
  735: *     End of DSYEVR_2STAGE
  736: *
  737:       END

CVSweb interface <joel.bertrand@systella.fr>