File:  [local] / rpl / lapack / lapack / dsyevr.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:08 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYEVR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
   23: *                          IWORK, LIWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            ISUPPZ( * ), IWORK( * )
   32: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> DSYEVR computes selected eigenvalues and, optionally, eigenvectors
   42: *> of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
   43: *> selected by specifying either a range of values or a range of
   44: *> indices for the desired eigenvalues.
   45: *>
   46: *> DSYEVR first reduces the matrix A to tridiagonal form T with a call
   47: *> to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute
   48: *> the eigenspectrum using Relatively Robust Representations.  DSTEMR
   49: *> computes eigenvalues by the dqds algorithm, while orthogonal
   50: *> eigenvectors are computed from various "good" L D L^T representations
   51: *> (also known as Relatively Robust Representations). Gram-Schmidt
   52: *> orthogonalization is avoided as far as possible. More specifically,
   53: *> the various steps of the algorithm are as follows.
   54: *>
   55: *> For each unreduced block (submatrix) of T,
   56: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   57: *>        define all the wanted eigenvalues to high relative accuracy.
   58: *>        This means that small relative changes in the entries of D and L
   59: *>        cause only small relative changes in the eigenvalues and
   60: *>        eigenvectors. The standard (unfactored) representation of the
   61: *>        tridiagonal matrix T does not have this property in general.
   62: *>    (b) Compute the eigenvalues to suitable accuracy.
   63: *>        If the eigenvectors are desired, the algorithm attains full
   64: *>        accuracy of the computed eigenvalues only right before
   65: *>        the corresponding vectors have to be computed, see steps c) and d).
   66: *>    (c) For each cluster of close eigenvalues, select a new
   67: *>        shift close to the cluster, find a new factorization, and refine
   68: *>        the shifted eigenvalues to suitable accuracy.
   69: *>    (d) For each eigenvalue with a large enough relative separation compute
   70: *>        the corresponding eigenvector by forming a rank revealing twisted
   71: *>        factorization. Go back to (c) for any clusters that remain.
   72: *>
   73: *> The desired accuracy of the output can be specified by the input
   74: *> parameter ABSTOL.
   75: *>
   76: *> For more details, see DSTEMR's documentation and:
   77: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   78: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   79: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   80: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   81: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   82: *>   2004.  Also LAPACK Working Note 154.
   83: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   84: *>   tridiagonal eigenvalue/eigenvector problem",
   85: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   86: *>   UC Berkeley, May 1997.
   87: *>
   88: *>
   89: *> Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
   90: *> on machines which conform to the ieee-754 floating point standard.
   91: *> DSYEVR calls DSTEBZ and DSTEIN on non-ieee machines and
   92: *> when partial spectrum requests are made.
   93: *>
   94: *> Normal execution of DSTEMR may create NaNs and infinities and
   95: *> hence may abort due to a floating point exception in environments
   96: *> which do not handle NaNs and infinities in the ieee standard default
   97: *> manner.
   98: *> \endverbatim
   99: *
  100: *  Arguments:
  101: *  ==========
  102: *
  103: *> \param[in] JOBZ
  104: *> \verbatim
  105: *>          JOBZ is CHARACTER*1
  106: *>          = 'N':  Compute eigenvalues only;
  107: *>          = 'V':  Compute eigenvalues and eigenvectors.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] RANGE
  111: *> \verbatim
  112: *>          RANGE is CHARACTER*1
  113: *>          = 'A': all eigenvalues will be found.
  114: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  115: *>                 will be found.
  116: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  117: *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
  118: *>          DSTEIN are called
  119: *> \endverbatim
  120: *>
  121: *> \param[in] UPLO
  122: *> \verbatim
  123: *>          UPLO is CHARACTER*1
  124: *>          = 'U':  Upper triangle of A is stored;
  125: *>          = 'L':  Lower triangle of A is stored.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] N
  129: *> \verbatim
  130: *>          N is INTEGER
  131: *>          The order of the matrix A.  N >= 0.
  132: *> \endverbatim
  133: *>
  134: *> \param[in,out] A
  135: *> \verbatim
  136: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
  137: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
  138: *>          leading N-by-N upper triangular part of A contains the
  139: *>          upper triangular part of the matrix A.  If UPLO = 'L',
  140: *>          the leading N-by-N lower triangular part of A contains
  141: *>          the lower triangular part of the matrix A.
  142: *>          On exit, the lower triangle (if UPLO='L') or the upper
  143: *>          triangle (if UPLO='U') of A, including the diagonal, is
  144: *>          destroyed.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDA
  148: *> \verbatim
  149: *>          LDA is INTEGER
  150: *>          The leading dimension of the array A.  LDA >= max(1,N).
  151: *> \endverbatim
  152: *>
  153: *> \param[in] VL
  154: *> \verbatim
  155: *>          VL is DOUBLE PRECISION
  156: *>          If RANGE='V', the lower bound of the interval to
  157: *>          be searched for eigenvalues. VL < VU.
  158: *>          Not referenced if RANGE = 'A' or 'I'.
  159: *> \endverbatim
  160: *>
  161: *> \param[in] VU
  162: *> \verbatim
  163: *>          VU is DOUBLE PRECISION
  164: *>          If RANGE='V', the upper bound of the interval to
  165: *>          be searched for eigenvalues. VL < VU.
  166: *>          Not referenced if RANGE = 'A' or 'I'.
  167: *> \endverbatim
  168: *>
  169: *> \param[in] IL
  170: *> \verbatim
  171: *>          IL is INTEGER
  172: *>          If RANGE='I', the index of the
  173: *>          smallest eigenvalue to be returned.
  174: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  175: *>          Not referenced if RANGE = 'A' or 'V'.
  176: *> \endverbatim
  177: *>
  178: *> \param[in] IU
  179: *> \verbatim
  180: *>          IU is INTEGER
  181: *>          If RANGE='I', the index of the
  182: *>          largest eigenvalue to be returned.
  183: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  184: *>          Not referenced if RANGE = 'A' or 'V'.
  185: *> \endverbatim
  186: *>
  187: *> \param[in] ABSTOL
  188: *> \verbatim
  189: *>          ABSTOL is DOUBLE PRECISION
  190: *>          The absolute error tolerance for the eigenvalues.
  191: *>          An approximate eigenvalue is accepted as converged
  192: *>          when it is determined to lie in an interval [a,b]
  193: *>          of width less than or equal to
  194: *>
  195: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  196: *>
  197: *>          where EPS is the machine precision.  If ABSTOL is less than
  198: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  199: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  200: *>          by reducing A to tridiagonal form.
  201: *>
  202: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  203: *>          with Guaranteed High Relative Accuracy," by Demmel and
  204: *>          Kahan, LAPACK Working Note #3.
  205: *>
  206: *>          If high relative accuracy is important, set ABSTOL to
  207: *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  208: *>          eigenvalues are computed to high relative accuracy when
  209: *>          possible in future releases.  The current code does not
  210: *>          make any guarantees about high relative accuracy, but
  211: *>          future releases will. See J. Barlow and J. Demmel,
  212: *>          "Computing Accurate Eigensystems of Scaled Diagonally
  213: *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
  214: *>          of which matrices define their eigenvalues to high relative
  215: *>          accuracy.
  216: *> \endverbatim
  217: *>
  218: *> \param[out] M
  219: *> \verbatim
  220: *>          M is INTEGER
  221: *>          The total number of eigenvalues found.  0 <= M <= N.
  222: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  223: *> \endverbatim
  224: *>
  225: *> \param[out] W
  226: *> \verbatim
  227: *>          W is DOUBLE PRECISION array, dimension (N)
  228: *>          The first M elements contain the selected eigenvalues in
  229: *>          ascending order.
  230: *> \endverbatim
  231: *>
  232: *> \param[out] Z
  233: *> \verbatim
  234: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  235: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  236: *>          contain the orthonormal eigenvectors of the matrix A
  237: *>          corresponding to the selected eigenvalues, with the i-th
  238: *>          column of Z holding the eigenvector associated with W(i).
  239: *>          If JOBZ = 'N', then Z is not referenced.
  240: *>          Note: the user must ensure that at least max(1,M) columns are
  241: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  242: *>          is not known in advance and an upper bound must be used.
  243: *>          Supplying N columns is always safe.
  244: *> \endverbatim
  245: *>
  246: *> \param[in] LDZ
  247: *> \verbatim
  248: *>          LDZ is INTEGER
  249: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  250: *>          JOBZ = 'V', LDZ >= max(1,N).
  251: *> \endverbatim
  252: *>
  253: *> \param[out] ISUPPZ
  254: *> \verbatim
  255: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  256: *>          The support of the eigenvectors in Z, i.e., the indices
  257: *>          indicating the nonzero elements in Z. The i-th eigenvector
  258: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  259: *>          ISUPPZ( 2*i ). This is an output of DSTEMR (tridiagonal
  260: *>          matrix). The support of the eigenvectors of A is typically
  261: *>          1:N because of the orthogonal transformations applied by DORMTR.
  262: *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  263: *> \endverbatim
  264: *>
  265: *> \param[out] WORK
  266: *> \verbatim
  267: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  268: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  269: *> \endverbatim
  270: *>
  271: *> \param[in] LWORK
  272: *> \verbatim
  273: *>          LWORK is INTEGER
  274: *>          The dimension of the array WORK.  LWORK >= max(1,26*N).
  275: *>          For optimal efficiency, LWORK >= (NB+6)*N,
  276: *>          where NB is the max of the blocksize for DSYTRD and DORMTR
  277: *>          returned by ILAENV.
  278: *>
  279: *>          If LWORK = -1, then a workspace query is assumed; the routine
  280: *>          only calculates the optimal size of the WORK array, returns
  281: *>          this value as the first entry of the WORK array, and no error
  282: *>          message related to LWORK is issued by XERBLA.
  283: *> \endverbatim
  284: *>
  285: *> \param[out] IWORK
  286: *> \verbatim
  287: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  288: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
  289: *> \endverbatim
  290: *>
  291: *> \param[in] LIWORK
  292: *> \verbatim
  293: *>          LIWORK is INTEGER
  294: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  295: *>
  296: *>          If LIWORK = -1, then a workspace query is assumed; the
  297: *>          routine only calculates the optimal size of the IWORK array,
  298: *>          returns this value as the first entry of the IWORK array, and
  299: *>          no error message related to LIWORK is issued by XERBLA.
  300: *> \endverbatim
  301: *>
  302: *> \param[out] INFO
  303: *> \verbatim
  304: *>          INFO is INTEGER
  305: *>          = 0:  successful exit
  306: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  307: *>          > 0:  Internal error
  308: *> \endverbatim
  309: *
  310: *  Authors:
  311: *  ========
  312: *
  313: *> \author Univ. of Tennessee
  314: *> \author Univ. of California Berkeley
  315: *> \author Univ. of Colorado Denver
  316: *> \author NAG Ltd.
  317: *
  318: *> \ingroup doubleSYeigen
  319: *
  320: *> \par Contributors:
  321: *  ==================
  322: *>
  323: *>     Inderjit Dhillon, IBM Almaden, USA \n
  324: *>     Osni Marques, LBNL/NERSC, USA \n
  325: *>     Ken Stanley, Computer Science Division, University of
  326: *>       California at Berkeley, USA \n
  327: *>     Jason Riedy, Computer Science Division, University of
  328: *>       California at Berkeley, USA \n
  329: *>
  330: *  =====================================================================
  331:       SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  332:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
  333:      $                   IWORK, LIWORK, INFO )
  334: *
  335: *  -- LAPACK driver routine --
  336: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  337: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  338: *
  339: *     .. Scalar Arguments ..
  340:       CHARACTER          JOBZ, RANGE, UPLO
  341:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
  342:       DOUBLE PRECISION   ABSTOL, VL, VU
  343: *     ..
  344: *     .. Array Arguments ..
  345:       INTEGER            ISUPPZ( * ), IWORK( * )
  346:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
  347: *     ..
  348: *
  349: * =====================================================================
  350: *
  351: *     .. Parameters ..
  352:       DOUBLE PRECISION   ZERO, ONE, TWO
  353:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  354: *     ..
  355: *     .. Local Scalars ..
  356:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
  357:      $                   TRYRAC
  358:       CHARACTER          ORDER
  359:       INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
  360:      $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
  361:      $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
  362:      $                   LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
  363:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  364:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  365: *     ..
  366: *     .. External Functions ..
  367:       LOGICAL            LSAME
  368:       INTEGER            ILAENV
  369:       DOUBLE PRECISION   DLAMCH, DLANSY
  370:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
  371: *     ..
  372: *     .. External Subroutines ..
  373:       EXTERNAL           DCOPY, DORMTR, DSCAL, DSTEBZ, DSTEMR, DSTEIN,
  374:      $                   DSTERF, DSWAP, DSYTRD, XERBLA
  375: *     ..
  376: *     .. Intrinsic Functions ..
  377:       INTRINSIC          MAX, MIN, SQRT
  378: *     ..
  379: *     .. Executable Statements ..
  380: *
  381: *     Test the input parameters.
  382: *
  383:       IEEEOK = ILAENV( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
  384: *
  385:       LOWER = LSAME( UPLO, 'L' )
  386:       WANTZ = LSAME( JOBZ, 'V' )
  387:       ALLEIG = LSAME( RANGE, 'A' )
  388:       VALEIG = LSAME( RANGE, 'V' )
  389:       INDEIG = LSAME( RANGE, 'I' )
  390: *
  391:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
  392: *
  393:       LWMIN = MAX( 1, 26*N )
  394:       LIWMIN = MAX( 1, 10*N )
  395: *
  396:       INFO = 0
  397:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  398:          INFO = -1
  399:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  400:          INFO = -2
  401:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  402:          INFO = -3
  403:       ELSE IF( N.LT.0 ) THEN
  404:          INFO = -4
  405:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  406:          INFO = -6
  407:       ELSE
  408:          IF( VALEIG ) THEN
  409:             IF( N.GT.0 .AND. VU.LE.VL )
  410:      $         INFO = -8
  411:          ELSE IF( INDEIG ) THEN
  412:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  413:                INFO = -9
  414:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  415:                INFO = -10
  416:             END IF
  417:          END IF
  418:       END IF
  419:       IF( INFO.EQ.0 ) THEN
  420:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  421:             INFO = -15
  422:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  423:             INFO = -18
  424:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  425:             INFO = -20
  426:          END IF
  427:       END IF
  428: *
  429:       IF( INFO.EQ.0 ) THEN
  430:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
  431:          NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
  432:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  433:          WORK( 1 ) = LWKOPT
  434:          IWORK( 1 ) = LIWMIN
  435:       END IF
  436: *
  437:       IF( INFO.NE.0 ) THEN
  438:          CALL XERBLA( 'DSYEVR', -INFO )
  439:          RETURN
  440:       ELSE IF( LQUERY ) THEN
  441:          RETURN
  442:       END IF
  443: *
  444: *     Quick return if possible
  445: *
  446:       M = 0
  447:       IF( N.EQ.0 ) THEN
  448:          WORK( 1 ) = 1
  449:          RETURN
  450:       END IF
  451: *
  452:       IF( N.EQ.1 ) THEN
  453:          WORK( 1 ) = 7
  454:          IF( ALLEIG .OR. INDEIG ) THEN
  455:             M = 1
  456:             W( 1 ) = A( 1, 1 )
  457:          ELSE
  458:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
  459:                M = 1
  460:                W( 1 ) = A( 1, 1 )
  461:             END IF
  462:          END IF
  463:          IF( WANTZ ) THEN
  464:             Z( 1, 1 ) = ONE
  465:             ISUPPZ( 1 ) = 1
  466:             ISUPPZ( 2 ) = 1
  467:          END IF
  468:          RETURN
  469:       END IF
  470: *
  471: *     Get machine constants.
  472: *
  473:       SAFMIN = DLAMCH( 'Safe minimum' )
  474:       EPS = DLAMCH( 'Precision' )
  475:       SMLNUM = SAFMIN / EPS
  476:       BIGNUM = ONE / SMLNUM
  477:       RMIN = SQRT( SMLNUM )
  478:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  479: *
  480: *     Scale matrix to allowable range, if necessary.
  481: *
  482:       ISCALE = 0
  483:       ABSTLL = ABSTOL
  484:       IF (VALEIG) THEN
  485:          VLL = VL
  486:          VUU = VU
  487:       END IF
  488:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  489:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  490:          ISCALE = 1
  491:          SIGMA = RMIN / ANRM
  492:       ELSE IF( ANRM.GT.RMAX ) THEN
  493:          ISCALE = 1
  494:          SIGMA = RMAX / ANRM
  495:       END IF
  496:       IF( ISCALE.EQ.1 ) THEN
  497:          IF( LOWER ) THEN
  498:             DO 10 J = 1, N
  499:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  500:    10       CONTINUE
  501:          ELSE
  502:             DO 20 J = 1, N
  503:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
  504:    20       CONTINUE
  505:          END IF
  506:          IF( ABSTOL.GT.0 )
  507:      $      ABSTLL = ABSTOL*SIGMA
  508:          IF( VALEIG ) THEN
  509:             VLL = VL*SIGMA
  510:             VUU = VU*SIGMA
  511:          END IF
  512:       END IF
  513: 
  514: *     Initialize indices into workspaces.  Note: The IWORK indices are
  515: *     used only if DSTERF or DSTEMR fail.
  516: 
  517: *     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
  518: *     elementary reflectors used in DSYTRD.
  519:       INDTAU = 1
  520: *     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
  521:       INDD = INDTAU + N
  522: *     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
  523: *     tridiagonal matrix from DSYTRD.
  524:       INDE = INDD + N
  525: *     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
  526: *     -written by DSTEMR (the DSTERF path copies the diagonal to W).
  527:       INDDD = INDE + N
  528: *     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
  529: *     -written while computing the eigenvalues in DSTERF and DSTEMR.
  530:       INDEE = INDDD + N
  531: *     INDWK is the starting offset of the left-over workspace, and
  532: *     LLWORK is the remaining workspace size.
  533:       INDWK = INDEE + N
  534:       LLWORK = LWORK - INDWK + 1
  535: 
  536: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  537: *     stores the block indices of each of the M<=N eigenvalues.
  538:       INDIBL = 1
  539: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  540: *     stores the starting and finishing indices of each block.
  541:       INDISP = INDIBL + N
  542: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  543: *     that corresponding to eigenvectors that fail to converge in
  544: *     DSTEIN.  This information is discarded; if any fail, the driver
  545: *     returns INFO > 0.
  546:       INDIFL = INDISP + N
  547: *     INDIWO is the offset of the remaining integer workspace.
  548:       INDIWO = INDIFL + N
  549: 
  550: *
  551: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
  552: *
  553:       CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
  554:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
  555: *
  556: *     If all eigenvalues are desired
  557: *     then call DSTERF or DSTEMR and DORMTR.
  558: *
  559:       IF( ( ALLEIG .OR. ( INDEIG .AND. IL.EQ.1 .AND. IU.EQ.N ) ) .AND.
  560:      $    IEEEOK.EQ.1 ) THEN
  561:          IF( .NOT.WANTZ ) THEN
  562:             CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  563:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  564:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  565:          ELSE
  566:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  567:             CALL DCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
  568: *
  569:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  570:                TRYRAC = .TRUE.
  571:             ELSE
  572:                TRYRAC = .FALSE.
  573:             END IF
  574:             CALL DSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
  575:      $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
  576:      $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
  577:      $                   INFO )
  578: *
  579: *
  580: *
  581: *        Apply orthogonal matrix used in reduction to tridiagonal
  582: *        form to eigenvectors returned by DSTEMR.
  583: *
  584:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
  585:                INDWKN = INDE
  586:                LLWRKN = LWORK - INDWKN + 1
  587:                CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA,
  588:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  589:      $                      LLWRKN, IINFO )
  590:             END IF
  591:          END IF
  592: *
  593: *
  594:          IF( INFO.EQ.0 ) THEN
  595: *           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are
  596: *           undefined.
  597:             M = N
  598:             GO TO 30
  599:          END IF
  600:          INFO = 0
  601:       END IF
  602: *
  603: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
  604: *     Also call DSTEBZ and DSTEIN if DSTEMR fails.
  605: *
  606:       IF( WANTZ ) THEN
  607:          ORDER = 'B'
  608:       ELSE
  609:          ORDER = 'E'
  610:       END IF
  611: 
  612:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  613:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  614:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
  615:      $             IWORK( INDIWO ), INFO )
  616: *
  617:       IF( WANTZ ) THEN
  618:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  619:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  620:      $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  621:      $                INFO )
  622: *
  623: *        Apply orthogonal matrix used in reduction to tridiagonal
  624: *        form to eigenvectors returned by DSTEIN.
  625: *
  626:          INDWKN = INDE
  627:          LLWRKN = LWORK - INDWKN + 1
  628:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  629:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  630:       END IF
  631: *
  632: *     If matrix was scaled, then rescale eigenvalues appropriately.
  633: *
  634: *  Jump here if DSTEMR/DSTEIN succeeded.
  635:    30 CONTINUE
  636:       IF( ISCALE.EQ.1 ) THEN
  637:          IF( INFO.EQ.0 ) THEN
  638:             IMAX = M
  639:          ELSE
  640:             IMAX = INFO - 1
  641:          END IF
  642:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  643:       END IF
  644: *
  645: *     If eigenvalues are not in order, then sort them, along with
  646: *     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
  647: *     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
  648: *     not return this detailed information to the user.
  649: *
  650:       IF( WANTZ ) THEN
  651:          DO 50 J = 1, M - 1
  652:             I = 0
  653:             TMP1 = W( J )
  654:             DO 40 JJ = J + 1, M
  655:                IF( W( JJ ).LT.TMP1 ) THEN
  656:                   I = JJ
  657:                   TMP1 = W( JJ )
  658:                END IF
  659:    40       CONTINUE
  660: *
  661:             IF( I.NE.0 ) THEN
  662:                W( I ) = W( J )
  663:                W( J ) = TMP1
  664:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  665:             END IF
  666:    50    CONTINUE
  667:       END IF
  668: *
  669: *     Set WORK(1) to optimal workspace size.
  670: *
  671:       WORK( 1 ) = LWKOPT
  672:       IWORK( 1 ) = LIWMIN
  673: *
  674:       RETURN
  675: *
  676: *     End of DSYEVR
  677: *
  678:       END

CVSweb interface <joel.bertrand@systella.fr>