File:  [local] / rpl / lapack / lapack / dsyevr.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:25 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief <b> DSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSYEVR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
   23: *                          IWORK, LIWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            ISUPPZ( * ), IWORK( * )
   32: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> DSYEVR computes selected eigenvalues and, optionally, eigenvectors
   42: *> of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
   43: *> selected by specifying either a range of values or a range of
   44: *> indices for the desired eigenvalues.
   45: *>
   46: *> DSYEVR first reduces the matrix A to tridiagonal form T with a call
   47: *> to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute
   48: *> the eigenspectrum using Relatively Robust Representations.  DSTEMR
   49: *> computes eigenvalues by the dqds algorithm, while orthogonal
   50: *> eigenvectors are computed from various "good" L D L^T representations
   51: *> (also known as Relatively Robust Representations). Gram-Schmidt
   52: *> orthogonalization is avoided as far as possible. More specifically,
   53: *> the various steps of the algorithm are as follows.
   54: *>
   55: *> For each unreduced block (submatrix) of T,
   56: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   57: *>        define all the wanted eigenvalues to high relative accuracy.
   58: *>        This means that small relative changes in the entries of D and L
   59: *>        cause only small relative changes in the eigenvalues and
   60: *>        eigenvectors. The standard (unfactored) representation of the
   61: *>        tridiagonal matrix T does not have this property in general.
   62: *>    (b) Compute the eigenvalues to suitable accuracy.
   63: *>        If the eigenvectors are desired, the algorithm attains full
   64: *>        accuracy of the computed eigenvalues only right before
   65: *>        the corresponding vectors have to be computed, see steps c) and d).
   66: *>    (c) For each cluster of close eigenvalues, select a new
   67: *>        shift close to the cluster, find a new factorization, and refine
   68: *>        the shifted eigenvalues to suitable accuracy.
   69: *>    (d) For each eigenvalue with a large enough relative separation compute
   70: *>        the corresponding eigenvector by forming a rank revealing twisted
   71: *>        factorization. Go back to (c) for any clusters that remain.
   72: *>
   73: *> The desired accuracy of the output can be specified by the input
   74: *> parameter ABSTOL.
   75: *>
   76: *> For more details, see DSTEMR's documentation and:
   77: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   78: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   79: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   80: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   81: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   82: *>   2004.  Also LAPACK Working Note 154.
   83: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   84: *>   tridiagonal eigenvalue/eigenvector problem",
   85: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   86: *>   UC Berkeley, May 1997.
   87: *>
   88: *>
   89: *> Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
   90: *> on machines which conform to the ieee-754 floating point standard.
   91: *> DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
   92: *> when partial spectrum requests are made.
   93: *>
   94: *> Normal execution of DSTEMR may create NaNs and infinities and
   95: *> hence may abort due to a floating point exception in environments
   96: *> which do not handle NaNs and infinities in the ieee standard default
   97: *> manner.
   98: *> \endverbatim
   99: *
  100: *  Arguments:
  101: *  ==========
  102: *
  103: *> \param[in] JOBZ
  104: *> \verbatim
  105: *>          JOBZ is CHARACTER*1
  106: *>          = 'N':  Compute eigenvalues only;
  107: *>          = 'V':  Compute eigenvalues and eigenvectors.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] RANGE
  111: *> \verbatim
  112: *>          RANGE is CHARACTER*1
  113: *>          = 'A': all eigenvalues will be found.
  114: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  115: *>                 will be found.
  116: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  117: *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
  118: *>          DSTEIN are called
  119: *> \endverbatim
  120: *>
  121: *> \param[in] UPLO
  122: *> \verbatim
  123: *>          UPLO is CHARACTER*1
  124: *>          = 'U':  Upper triangle of A is stored;
  125: *>          = 'L':  Lower triangle of A is stored.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] N
  129: *> \verbatim
  130: *>          N is INTEGER
  131: *>          The order of the matrix A.  N >= 0.
  132: *> \endverbatim
  133: *>
  134: *> \param[in,out] A
  135: *> \verbatim
  136: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
  137: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
  138: *>          leading N-by-N upper triangular part of A contains the
  139: *>          upper triangular part of the matrix A.  If UPLO = 'L',
  140: *>          the leading N-by-N lower triangular part of A contains
  141: *>          the lower triangular part of the matrix A.
  142: *>          On exit, the lower triangle (if UPLO='L') or the upper
  143: *>          triangle (if UPLO='U') of A, including the diagonal, is
  144: *>          destroyed.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDA
  148: *> \verbatim
  149: *>          LDA is INTEGER
  150: *>          The leading dimension of the array A.  LDA >= max(1,N).
  151: *> \endverbatim
  152: *>
  153: *> \param[in] VL
  154: *> \verbatim
  155: *>          VL is DOUBLE PRECISION
  156: *> \endverbatim
  157: *>
  158: *> \param[in] VU
  159: *> \verbatim
  160: *>          VU is DOUBLE PRECISION
  161: *>          If RANGE='V', the lower and upper bounds of the interval to
  162: *>          be searched for eigenvalues. VL < VU.
  163: *>          Not referenced if RANGE = 'A' or 'I'.
  164: *> \endverbatim
  165: *>
  166: *> \param[in] IL
  167: *> \verbatim
  168: *>          IL is INTEGER
  169: *> \endverbatim
  170: *>
  171: *> \param[in] IU
  172: *> \verbatim
  173: *>          IU is INTEGER
  174: *>          If RANGE='I', the indices (in ascending order) of the
  175: *>          smallest and largest eigenvalues to be returned.
  176: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  177: *>          Not referenced if RANGE = 'A' or 'V'.
  178: *> \endverbatim
  179: *>
  180: *> \param[in] ABSTOL
  181: *> \verbatim
  182: *>          ABSTOL is DOUBLE PRECISION
  183: *>          The absolute error tolerance for the eigenvalues.
  184: *>          An approximate eigenvalue is accepted as converged
  185: *>          when it is determined to lie in an interval [a,b]
  186: *>          of width less than or equal to
  187: *>
  188: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  189: *>
  190: *>          where EPS is the machine precision.  If ABSTOL is less than
  191: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  192: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  193: *>          by reducing A to tridiagonal form.
  194: *>
  195: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  196: *>          with Guaranteed High Relative Accuracy," by Demmel and
  197: *>          Kahan, LAPACK Working Note #3.
  198: *>
  199: *>          If high relative accuracy is important, set ABSTOL to
  200: *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  201: *>          eigenvalues are computed to high relative accuracy when
  202: *>          possible in future releases.  The current code does not
  203: *>          make any guarantees about high relative accuracy, but
  204: *>          future releases will. See J. Barlow and J. Demmel,
  205: *>          "Computing Accurate Eigensystems of Scaled Diagonally
  206: *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
  207: *>          of which matrices define their eigenvalues to high relative
  208: *>          accuracy.
  209: *> \endverbatim
  210: *>
  211: *> \param[out] M
  212: *> \verbatim
  213: *>          M is INTEGER
  214: *>          The total number of eigenvalues found.  0 <= M <= N.
  215: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  216: *> \endverbatim
  217: *>
  218: *> \param[out] W
  219: *> \verbatim
  220: *>          W is DOUBLE PRECISION array, dimension (N)
  221: *>          The first M elements contain the selected eigenvalues in
  222: *>          ascending order.
  223: *> \endverbatim
  224: *>
  225: *> \param[out] Z
  226: *> \verbatim
  227: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  228: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  229: *>          contain the orthonormal eigenvectors of the matrix A
  230: *>          corresponding to the selected eigenvalues, with the i-th
  231: *>          column of Z holding the eigenvector associated with W(i).
  232: *>          If JOBZ = 'N', then Z is not referenced.
  233: *>          Note: the user must ensure that at least max(1,M) columns are
  234: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  235: *>          is not known in advance and an upper bound must be used.
  236: *>          Supplying N columns is always safe.
  237: *> \endverbatim
  238: *>
  239: *> \param[in] LDZ
  240: *> \verbatim
  241: *>          LDZ is INTEGER
  242: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  243: *>          JOBZ = 'V', LDZ >= max(1,N).
  244: *> \endverbatim
  245: *>
  246: *> \param[out] ISUPPZ
  247: *> \verbatim
  248: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  249: *>          The support of the eigenvectors in Z, i.e., the indices
  250: *>          indicating the nonzero elements in Z. The i-th eigenvector
  251: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  252: *>          ISUPPZ( 2*i ).
  253: *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  254: *> \endverbatim
  255: *>
  256: *> \param[out] WORK
  257: *> \verbatim
  258: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  259: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  260: *> \endverbatim
  261: *>
  262: *> \param[in] LWORK
  263: *> \verbatim
  264: *>          LWORK is INTEGER
  265: *>          The dimension of the array WORK.  LWORK >= max(1,26*N).
  266: *>          For optimal efficiency, LWORK >= (NB+6)*N,
  267: *>          where NB is the max of the blocksize for DSYTRD and DORMTR
  268: *>          returned by ILAENV.
  269: *>
  270: *>          If LWORK = -1, then a workspace query is assumed; the routine
  271: *>          only calculates the optimal size of the WORK array, returns
  272: *>          this value as the first entry of the WORK array, and no error
  273: *>          message related to LWORK is issued by XERBLA.
  274: *> \endverbatim
  275: *>
  276: *> \param[out] IWORK
  277: *> \verbatim
  278: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  279: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
  280: *> \endverbatim
  281: *>
  282: *> \param[in] LIWORK
  283: *> \verbatim
  284: *>          LIWORK is INTEGER
  285: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  286: *>
  287: *>          If LIWORK = -1, then a workspace query is assumed; the
  288: *>          routine only calculates the optimal size of the IWORK array,
  289: *>          returns this value as the first entry of the IWORK array, and
  290: *>          no error message related to LIWORK is issued by XERBLA.
  291: *> \endverbatim
  292: *>
  293: *> \param[out] INFO
  294: *> \verbatim
  295: *>          INFO is INTEGER
  296: *>          = 0:  successful exit
  297: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  298: *>          > 0:  Internal error
  299: *> \endverbatim
  300: *
  301: *  Authors:
  302: *  ========
  303: *
  304: *> \author Univ. of Tennessee 
  305: *> \author Univ. of California Berkeley 
  306: *> \author Univ. of Colorado Denver 
  307: *> \author NAG Ltd. 
  308: *
  309: *> \date November 2011
  310: *
  311: *> \ingroup doubleSYeigen
  312: *
  313: *> \par Contributors:
  314: *  ==================
  315: *>
  316: *>     Inderjit Dhillon, IBM Almaden, USA \n
  317: *>     Osni Marques, LBNL/NERSC, USA \n
  318: *>     Ken Stanley, Computer Science Division, University of
  319: *>       California at Berkeley, USA \n
  320: *>     Jason Riedy, Computer Science Division, University of
  321: *>       California at Berkeley, USA \n
  322: *>
  323: *  =====================================================================
  324:       SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  325:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
  326:      $                   IWORK, LIWORK, INFO )
  327: *
  328: *  -- LAPACK driver routine (version 3.4.0) --
  329: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  330: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  331: *     November 2011
  332: *
  333: *     .. Scalar Arguments ..
  334:       CHARACTER          JOBZ, RANGE, UPLO
  335:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
  336:       DOUBLE PRECISION   ABSTOL, VL, VU
  337: *     ..
  338: *     .. Array Arguments ..
  339:       INTEGER            ISUPPZ( * ), IWORK( * )
  340:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
  341: *     ..
  342: *
  343: * =====================================================================
  344: *
  345: *     .. Parameters ..
  346:       DOUBLE PRECISION   ZERO, ONE, TWO
  347:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  348: *     ..
  349: *     .. Local Scalars ..
  350:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
  351:      $                   TRYRAC
  352:       CHARACTER          ORDER
  353:       INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
  354:      $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
  355:      $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
  356:      $                   LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
  357:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  358:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  359: *     ..
  360: *     .. External Functions ..
  361:       LOGICAL            LSAME
  362:       INTEGER            ILAENV
  363:       DOUBLE PRECISION   DLAMCH, DLANSY
  364:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
  365: *     ..
  366: *     .. External Subroutines ..
  367:       EXTERNAL           DCOPY, DORMTR, DSCAL, DSTEBZ, DSTEMR, DSTEIN,
  368:      $                   DSTERF, DSWAP, DSYTRD, XERBLA
  369: *     ..
  370: *     .. Intrinsic Functions ..
  371:       INTRINSIC          MAX, MIN, SQRT
  372: *     ..
  373: *     .. Executable Statements ..
  374: *
  375: *     Test the input parameters.
  376: *
  377:       IEEEOK = ILAENV( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
  378: *
  379:       LOWER = LSAME( UPLO, 'L' )
  380:       WANTZ = LSAME( JOBZ, 'V' )
  381:       ALLEIG = LSAME( RANGE, 'A' )
  382:       VALEIG = LSAME( RANGE, 'V' )
  383:       INDEIG = LSAME( RANGE, 'I' )
  384: *
  385:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
  386: *
  387:       LWMIN = MAX( 1, 26*N )
  388:       LIWMIN = MAX( 1, 10*N )
  389: *
  390:       INFO = 0
  391:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  392:          INFO = -1
  393:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  394:          INFO = -2
  395:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  396:          INFO = -3
  397:       ELSE IF( N.LT.0 ) THEN
  398:          INFO = -4
  399:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  400:          INFO = -6
  401:       ELSE
  402:          IF( VALEIG ) THEN
  403:             IF( N.GT.0 .AND. VU.LE.VL )
  404:      $         INFO = -8
  405:          ELSE IF( INDEIG ) THEN
  406:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  407:                INFO = -9
  408:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  409:                INFO = -10
  410:             END IF
  411:          END IF
  412:       END IF
  413:       IF( INFO.EQ.0 ) THEN
  414:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  415:             INFO = -15
  416:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  417:             INFO = -18
  418:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  419:             INFO = -20
  420:          END IF
  421:       END IF
  422: *
  423:       IF( INFO.EQ.0 ) THEN
  424:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
  425:          NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
  426:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  427:          WORK( 1 ) = LWKOPT
  428:          IWORK( 1 ) = LIWMIN
  429:       END IF
  430: *
  431:       IF( INFO.NE.0 ) THEN
  432:          CALL XERBLA( 'DSYEVR', -INFO )
  433:          RETURN
  434:       ELSE IF( LQUERY ) THEN
  435:          RETURN
  436:       END IF
  437: *
  438: *     Quick return if possible
  439: *
  440:       M = 0
  441:       IF( N.EQ.0 ) THEN
  442:          WORK( 1 ) = 1
  443:          RETURN
  444:       END IF
  445: *
  446:       IF( N.EQ.1 ) THEN
  447:          WORK( 1 ) = 7
  448:          IF( ALLEIG .OR. INDEIG ) THEN
  449:             M = 1
  450:             W( 1 ) = A( 1, 1 )
  451:          ELSE
  452:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
  453:                M = 1
  454:                W( 1 ) = A( 1, 1 )
  455:             END IF
  456:          END IF
  457:          IF( WANTZ ) THEN
  458:             Z( 1, 1 ) = ONE
  459:             ISUPPZ( 1 ) = 1
  460:             ISUPPZ( 2 ) = 1
  461:          END IF
  462:          RETURN
  463:       END IF
  464: *
  465: *     Get machine constants.
  466: *
  467:       SAFMIN = DLAMCH( 'Safe minimum' )
  468:       EPS = DLAMCH( 'Precision' )
  469:       SMLNUM = SAFMIN / EPS
  470:       BIGNUM = ONE / SMLNUM
  471:       RMIN = SQRT( SMLNUM )
  472:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  473: *
  474: *     Scale matrix to allowable range, if necessary.
  475: *
  476:       ISCALE = 0
  477:       ABSTLL = ABSTOL
  478:       IF (VALEIG) THEN
  479:          VLL = VL
  480:          VUU = VU
  481:       END IF
  482:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  483:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  484:          ISCALE = 1
  485:          SIGMA = RMIN / ANRM
  486:       ELSE IF( ANRM.GT.RMAX ) THEN
  487:          ISCALE = 1
  488:          SIGMA = RMAX / ANRM
  489:       END IF
  490:       IF( ISCALE.EQ.1 ) THEN
  491:          IF( LOWER ) THEN
  492:             DO 10 J = 1, N
  493:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  494:    10       CONTINUE
  495:          ELSE
  496:             DO 20 J = 1, N
  497:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
  498:    20       CONTINUE
  499:          END IF
  500:          IF( ABSTOL.GT.0 )
  501:      $      ABSTLL = ABSTOL*SIGMA
  502:          IF( VALEIG ) THEN
  503:             VLL = VL*SIGMA
  504:             VUU = VU*SIGMA
  505:          END IF
  506:       END IF
  507: 
  508: *     Initialize indices into workspaces.  Note: The IWORK indices are
  509: *     used only if DSTERF or DSTEMR fail.
  510: 
  511: *     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
  512: *     elementary reflectors used in DSYTRD.
  513:       INDTAU = 1
  514: *     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
  515:       INDD = INDTAU + N
  516: *     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
  517: *     tridiagonal matrix from DSYTRD.
  518:       INDE = INDD + N
  519: *     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
  520: *     -written by DSTEMR (the DSTERF path copies the diagonal to W).
  521:       INDDD = INDE + N
  522: *     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
  523: *     -written while computing the eigenvalues in DSTERF and DSTEMR.
  524:       INDEE = INDDD + N
  525: *     INDWK is the starting offset of the left-over workspace, and
  526: *     LLWORK is the remaining workspace size.
  527:       INDWK = INDEE + N
  528:       LLWORK = LWORK - INDWK + 1
  529: 
  530: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  531: *     stores the block indices of each of the M<=N eigenvalues.
  532:       INDIBL = 1
  533: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  534: *     stores the starting and finishing indices of each block.
  535:       INDISP = INDIBL + N
  536: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  537: *     that corresponding to eigenvectors that fail to converge in
  538: *     DSTEIN.  This information is discarded; if any fail, the driver
  539: *     returns INFO > 0.
  540:       INDIFL = INDISP + N
  541: *     INDIWO is the offset of the remaining integer workspace.
  542:       INDIWO = INDISP + N
  543: 
  544: *
  545: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
  546: *
  547:       CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
  548:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
  549: *
  550: *     If all eigenvalues are desired
  551: *     then call DSTERF or DSTEMR and DORMTR.
  552: *
  553:       IF( ( ALLEIG .OR. ( INDEIG .AND. IL.EQ.1 .AND. IU.EQ.N ) ) .AND.
  554:      $    IEEEOK.EQ.1 ) THEN
  555:          IF( .NOT.WANTZ ) THEN
  556:             CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  557:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  558:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  559:          ELSE
  560:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  561:             CALL DCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
  562: *
  563:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  564:                TRYRAC = .TRUE.
  565:             ELSE
  566:                TRYRAC = .FALSE.
  567:             END IF
  568:             CALL DSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
  569:      $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
  570:      $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
  571:      $                   INFO )
  572: *
  573: *
  574: *
  575: *        Apply orthogonal matrix used in reduction to tridiagonal
  576: *        form to eigenvectors returned by DSTEIN.
  577: *
  578:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
  579:                INDWKN = INDE
  580:                LLWRKN = LWORK - INDWKN + 1
  581:                CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA,
  582:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  583:      $                      LLWRKN, IINFO )
  584:             END IF
  585:          END IF
  586: *
  587: *
  588:          IF( INFO.EQ.0 ) THEN
  589: *           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are
  590: *           undefined.
  591:             M = N
  592:             GO TO 30
  593:          END IF
  594:          INFO = 0
  595:       END IF
  596: *
  597: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
  598: *     Also call DSTEBZ and DSTEIN if DSTEMR fails.
  599: *
  600:       IF( WANTZ ) THEN
  601:          ORDER = 'B'
  602:       ELSE
  603:          ORDER = 'E'
  604:       END IF
  605: 
  606:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  607:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  608:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
  609:      $             IWORK( INDIWO ), INFO )
  610: *
  611:       IF( WANTZ ) THEN
  612:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  613:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  614:      $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  615:      $                INFO )
  616: *
  617: *        Apply orthogonal matrix used in reduction to tridiagonal
  618: *        form to eigenvectors returned by DSTEIN.
  619: *
  620:          INDWKN = INDE
  621:          LLWRKN = LWORK - INDWKN + 1
  622:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  623:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  624:       END IF
  625: *
  626: *     If matrix was scaled, then rescale eigenvalues appropriately.
  627: *
  628: *  Jump here if DSTEMR/DSTEIN succeeded.
  629:    30 CONTINUE
  630:       IF( ISCALE.EQ.1 ) THEN
  631:          IF( INFO.EQ.0 ) THEN
  632:             IMAX = M
  633:          ELSE
  634:             IMAX = INFO - 1
  635:          END IF
  636:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  637:       END IF
  638: *
  639: *     If eigenvalues are not in order, then sort them, along with
  640: *     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
  641: *     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
  642: *     not return this detailed information to the user.
  643: *
  644:       IF( WANTZ ) THEN
  645:          DO 50 J = 1, M - 1
  646:             I = 0
  647:             TMP1 = W( J )
  648:             DO 40 JJ = J + 1, M
  649:                IF( W( JJ ).LT.TMP1 ) THEN
  650:                   I = JJ
  651:                   TMP1 = W( JJ )
  652:                END IF
  653:    40       CONTINUE
  654: *
  655:             IF( I.NE.0 ) THEN
  656:                W( I ) = W( J )
  657:                W( J ) = TMP1
  658:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  659:             END IF
  660:    50    CONTINUE
  661:       END IF
  662: *
  663: *     Set WORK(1) to optimal workspace size.
  664: *
  665:       WORK( 1 ) = LWKOPT
  666:       IWORK( 1 ) = LIWMIN
  667: *
  668:       RETURN
  669: *
  670: *     End of DSYEVR
  671: *
  672:       END

CVSweb interface <joel.bertrand@systella.fr>