Annotation of rpl/lapack/lapack/dsyevr.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
        !             2:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
        !             3:      $                   IWORK, LIWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBZ, RANGE, UPLO
        !            12:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
        !            13:       DOUBLE PRECISION   ABSTOL, VL, VU
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            ISUPPZ( * ), IWORK( * )
        !            17:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  DSYEVR computes selected eigenvalues and, optionally, eigenvectors
        !            24: *  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
        !            25: *  selected by specifying either a range of values or a range of
        !            26: *  indices for the desired eigenvalues.
        !            27: *
        !            28: *  DSYEVR first reduces the matrix A to tridiagonal form T with a call
        !            29: *  to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute
        !            30: *  the eigenspectrum using Relatively Robust Representations.  DSTEMR
        !            31: *  computes eigenvalues by the dqds algorithm, while orthogonal
        !            32: *  eigenvectors are computed from various "good" L D L^T representations
        !            33: *  (also known as Relatively Robust Representations). Gram-Schmidt
        !            34: *  orthogonalization is avoided as far as possible. More specifically,
        !            35: *  the various steps of the algorithm are as follows.
        !            36: *
        !            37: *  For each unreduced block (submatrix) of T,
        !            38: *     (a) Compute T - sigma I  = L D L^T, so that L and D
        !            39: *         define all the wanted eigenvalues to high relative accuracy.
        !            40: *         This means that small relative changes in the entries of D and L
        !            41: *         cause only small relative changes in the eigenvalues and
        !            42: *         eigenvectors. The standard (unfactored) representation of the
        !            43: *         tridiagonal matrix T does not have this property in general.
        !            44: *     (b) Compute the eigenvalues to suitable accuracy.
        !            45: *         If the eigenvectors are desired, the algorithm attains full
        !            46: *         accuracy of the computed eigenvalues only right before
        !            47: *         the corresponding vectors have to be computed, see steps c) and d).
        !            48: *     (c) For each cluster of close eigenvalues, select a new
        !            49: *         shift close to the cluster, find a new factorization, and refine
        !            50: *         the shifted eigenvalues to suitable accuracy.
        !            51: *     (d) For each eigenvalue with a large enough relative separation compute
        !            52: *         the corresponding eigenvector by forming a rank revealing twisted
        !            53: *         factorization. Go back to (c) for any clusters that remain.
        !            54: *
        !            55: *  The desired accuracy of the output can be specified by the input
        !            56: *  parameter ABSTOL.
        !            57: *
        !            58: *  For more details, see DSTEMR's documentation and:
        !            59: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
        !            60: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
        !            61: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
        !            62: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
        !            63: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
        !            64: *    2004.  Also LAPACK Working Note 154.
        !            65: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
        !            66: *    tridiagonal eigenvalue/eigenvector problem",
        !            67: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
        !            68: *    UC Berkeley, May 1997.
        !            69: *
        !            70: *
        !            71: *  Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
        !            72: *  on machines which conform to the ieee-754 floating point standard.
        !            73: *  DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
        !            74: *  when partial spectrum requests are made.
        !            75: *
        !            76: *  Normal execution of DSTEMR may create NaNs and infinities and
        !            77: *  hence may abort due to a floating point exception in environments
        !            78: *  which do not handle NaNs and infinities in the ieee standard default
        !            79: *  manner.
        !            80: *
        !            81: *  Arguments
        !            82: *  =========
        !            83: *
        !            84: *  JOBZ    (input) CHARACTER*1
        !            85: *          = 'N':  Compute eigenvalues only;
        !            86: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            87: *
        !            88: *  RANGE   (input) CHARACTER*1
        !            89: *          = 'A': all eigenvalues will be found.
        !            90: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            91: *                 will be found.
        !            92: *          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            93: ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
        !            94: ********** DSTEIN are called
        !            95: *
        !            96: *  UPLO    (input) CHARACTER*1
        !            97: *          = 'U':  Upper triangle of A is stored;
        !            98: *          = 'L':  Lower triangle of A is stored.
        !            99: *
        !           100: *  N       (input) INTEGER
        !           101: *          The order of the matrix A.  N >= 0.
        !           102: *
        !           103: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !           104: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
        !           105: *          leading N-by-N upper triangular part of A contains the
        !           106: *          upper triangular part of the matrix A.  If UPLO = 'L',
        !           107: *          the leading N-by-N lower triangular part of A contains
        !           108: *          the lower triangular part of the matrix A.
        !           109: *          On exit, the lower triangle (if UPLO='L') or the upper
        !           110: *          triangle (if UPLO='U') of A, including the diagonal, is
        !           111: *          destroyed.
        !           112: *
        !           113: *  LDA     (input) INTEGER
        !           114: *          The leading dimension of the array A.  LDA >= max(1,N).
        !           115: *
        !           116: *  VL      (input) DOUBLE PRECISION
        !           117: *  VU      (input) DOUBLE PRECISION
        !           118: *          If RANGE='V', the lower and upper bounds of the interval to
        !           119: *          be searched for eigenvalues. VL < VU.
        !           120: *          Not referenced if RANGE = 'A' or 'I'.
        !           121: *
        !           122: *  IL      (input) INTEGER
        !           123: *  IU      (input) INTEGER
        !           124: *          If RANGE='I', the indices (in ascending order) of the
        !           125: *          smallest and largest eigenvalues to be returned.
        !           126: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           127: *          Not referenced if RANGE = 'A' or 'V'.
        !           128: *
        !           129: *  ABSTOL  (input) DOUBLE PRECISION
        !           130: *          The absolute error tolerance for the eigenvalues.
        !           131: *          An approximate eigenvalue is accepted as converged
        !           132: *          when it is determined to lie in an interval [a,b]
        !           133: *          of width less than or equal to
        !           134: *
        !           135: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           136: *
        !           137: *          where EPS is the machine precision.  If ABSTOL is less than
        !           138: *          or equal to zero, then  EPS*|T|  will be used in its place,
        !           139: *          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           140: *          by reducing A to tridiagonal form.
        !           141: *
        !           142: *          See "Computing Small Singular Values of Bidiagonal Matrices
        !           143: *          with Guaranteed High Relative Accuracy," by Demmel and
        !           144: *          Kahan, LAPACK Working Note #3.
        !           145: *
        !           146: *          If high relative accuracy is important, set ABSTOL to
        !           147: *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
        !           148: *          eigenvalues are computed to high relative accuracy when
        !           149: *          possible in future releases.  The current code does not
        !           150: *          make any guarantees about high relative accuracy, but
        !           151: *          future releases will. See J. Barlow and J. Demmel,
        !           152: *          "Computing Accurate Eigensystems of Scaled Diagonally
        !           153: *          Dominant Matrices", LAPACK Working Note #7, for a discussion
        !           154: *          of which matrices define their eigenvalues to high relative
        !           155: *          accuracy.
        !           156: *
        !           157: *  M       (output) INTEGER
        !           158: *          The total number of eigenvalues found.  0 <= M <= N.
        !           159: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           160: *
        !           161: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !           162: *          The first M elements contain the selected eigenvalues in
        !           163: *          ascending order.
        !           164: *
        !           165: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
        !           166: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           167: *          contain the orthonormal eigenvectors of the matrix A
        !           168: *          corresponding to the selected eigenvalues, with the i-th
        !           169: *          column of Z holding the eigenvector associated with W(i).
        !           170: *          If JOBZ = 'N', then Z is not referenced.
        !           171: *          Note: the user must ensure that at least max(1,M) columns are
        !           172: *          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           173: *          is not known in advance and an upper bound must be used.
        !           174: *          Supplying N columns is always safe.
        !           175: *
        !           176: *  LDZ     (input) INTEGER
        !           177: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !           178: *          JOBZ = 'V', LDZ >= max(1,N).
        !           179: *
        !           180: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
        !           181: *          The support of the eigenvectors in Z, i.e., the indices
        !           182: *          indicating the nonzero elements in Z. The i-th eigenvector
        !           183: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
        !           184: *          ISUPPZ( 2*i ).
        !           185: ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
        !           186: *
        !           187: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           188: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           189: *
        !           190: *  LWORK   (input) INTEGER
        !           191: *          The dimension of the array WORK.  LWORK >= max(1,26*N).
        !           192: *          For optimal efficiency, LWORK >= (NB+6)*N,
        !           193: *          where NB is the max of the blocksize for DSYTRD and DORMTR
        !           194: *          returned by ILAENV.
        !           195: *
        !           196: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           197: *          only calculates the optimal size of the WORK array, returns
        !           198: *          this value as the first entry of the WORK array, and no error
        !           199: *          message related to LWORK is issued by XERBLA.
        !           200: *
        !           201: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           202: *          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
        !           203: *
        !           204: *  LIWORK  (input) INTEGER
        !           205: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
        !           206: *
        !           207: *          If LIWORK = -1, then a workspace query is assumed; the
        !           208: *          routine only calculates the optimal size of the IWORK array,
        !           209: *          returns this value as the first entry of the IWORK array, and
        !           210: *          no error message related to LIWORK is issued by XERBLA.
        !           211: *
        !           212: *  INFO    (output) INTEGER
        !           213: *          = 0:  successful exit
        !           214: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           215: *          > 0:  Internal error
        !           216: *
        !           217: *  Further Details
        !           218: *  ===============
        !           219: *
        !           220: *  Based on contributions by
        !           221: *     Inderjit Dhillon, IBM Almaden, USA
        !           222: *     Osni Marques, LBNL/NERSC, USA
        !           223: *     Ken Stanley, Computer Science Division, University of
        !           224: *       California at Berkeley, USA
        !           225: *     Jason Riedy, Computer Science Division, University of
        !           226: *       California at Berkeley, USA
        !           227: *
        !           228: * =====================================================================
        !           229: *
        !           230: *     .. Parameters ..
        !           231:       DOUBLE PRECISION   ZERO, ONE, TWO
        !           232:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
        !           233: *     ..
        !           234: *     .. Local Scalars ..
        !           235:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
        !           236:      $                   TRYRAC
        !           237:       CHARACTER          ORDER
        !           238:       INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
        !           239:      $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
        !           240:      $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
        !           241:      $                   LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
        !           242:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
        !           243:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
        !           244: *     ..
        !           245: *     .. External Functions ..
        !           246:       LOGICAL            LSAME
        !           247:       INTEGER            ILAENV
        !           248:       DOUBLE PRECISION   DLAMCH, DLANSY
        !           249:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
        !           250: *     ..
        !           251: *     .. External Subroutines ..
        !           252:       EXTERNAL           DCOPY, DORMTR, DSCAL, DSTEBZ, DSTEMR, DSTEIN,
        !           253:      $                   DSTERF, DSWAP, DSYTRD, XERBLA
        !           254: *     ..
        !           255: *     .. Intrinsic Functions ..
        !           256:       INTRINSIC          MAX, MIN, SQRT
        !           257: *     ..
        !           258: *     .. Executable Statements ..
        !           259: *
        !           260: *     Test the input parameters.
        !           261: *
        !           262:       IEEEOK = ILAENV( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
        !           263: *
        !           264:       LOWER = LSAME( UPLO, 'L' )
        !           265:       WANTZ = LSAME( JOBZ, 'V' )
        !           266:       ALLEIG = LSAME( RANGE, 'A' )
        !           267:       VALEIG = LSAME( RANGE, 'V' )
        !           268:       INDEIG = LSAME( RANGE, 'I' )
        !           269: *
        !           270:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
        !           271: *
        !           272:       LWMIN = MAX( 1, 26*N )
        !           273:       LIWMIN = MAX( 1, 10*N )
        !           274: *
        !           275:       INFO = 0
        !           276:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           277:          INFO = -1
        !           278:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           279:          INFO = -2
        !           280:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           281:          INFO = -3
        !           282:       ELSE IF( N.LT.0 ) THEN
        !           283:          INFO = -4
        !           284:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           285:          INFO = -6
        !           286:       ELSE
        !           287:          IF( VALEIG ) THEN
        !           288:             IF( N.GT.0 .AND. VU.LE.VL )
        !           289:      $         INFO = -8
        !           290:          ELSE IF( INDEIG ) THEN
        !           291:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
        !           292:                INFO = -9
        !           293:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
        !           294:                INFO = -10
        !           295:             END IF
        !           296:          END IF
        !           297:       END IF
        !           298:       IF( INFO.EQ.0 ) THEN
        !           299:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           300:             INFO = -15
        !           301:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           302:             INFO = -18
        !           303:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           304:             INFO = -20
        !           305:          END IF
        !           306:       END IF
        !           307: *
        !           308:       IF( INFO.EQ.0 ) THEN
        !           309:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
        !           310:          NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
        !           311:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
        !           312:          WORK( 1 ) = LWKOPT
        !           313:          IWORK( 1 ) = LIWMIN
        !           314:       END IF
        !           315: *
        !           316:       IF( INFO.NE.0 ) THEN
        !           317:          CALL XERBLA( 'DSYEVR', -INFO )
        !           318:          RETURN
        !           319:       ELSE IF( LQUERY ) THEN
        !           320:          RETURN
        !           321:       END IF
        !           322: *
        !           323: *     Quick return if possible
        !           324: *
        !           325:       M = 0
        !           326:       IF( N.EQ.0 ) THEN
        !           327:          WORK( 1 ) = 1
        !           328:          RETURN
        !           329:       END IF
        !           330: *
        !           331:       IF( N.EQ.1 ) THEN
        !           332:          WORK( 1 ) = 7
        !           333:          IF( ALLEIG .OR. INDEIG ) THEN
        !           334:             M = 1
        !           335:             W( 1 ) = A( 1, 1 )
        !           336:          ELSE
        !           337:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
        !           338:                M = 1
        !           339:                W( 1 ) = A( 1, 1 )
        !           340:             END IF
        !           341:          END IF
        !           342:          IF( WANTZ )
        !           343:      $      Z( 1, 1 ) = ONE
        !           344:          RETURN
        !           345:       END IF
        !           346: *
        !           347: *     Get machine constants.
        !           348: *
        !           349:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           350:       EPS = DLAMCH( 'Precision' )
        !           351:       SMLNUM = SAFMIN / EPS
        !           352:       BIGNUM = ONE / SMLNUM
        !           353:       RMIN = SQRT( SMLNUM )
        !           354:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
        !           355: *
        !           356: *     Scale matrix to allowable range, if necessary.
        !           357: *
        !           358:       ISCALE = 0
        !           359:       ABSTLL = ABSTOL
        !           360:       VLL = VL
        !           361:       VUU = VU
        !           362:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
        !           363:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           364:          ISCALE = 1
        !           365:          SIGMA = RMIN / ANRM
        !           366:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           367:          ISCALE = 1
        !           368:          SIGMA = RMAX / ANRM
        !           369:       END IF
        !           370:       IF( ISCALE.EQ.1 ) THEN
        !           371:          IF( LOWER ) THEN
        !           372:             DO 10 J = 1, N
        !           373:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
        !           374:    10       CONTINUE
        !           375:          ELSE
        !           376:             DO 20 J = 1, N
        !           377:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
        !           378:    20       CONTINUE
        !           379:          END IF
        !           380:          IF( ABSTOL.GT.0 )
        !           381:      $      ABSTLL = ABSTOL*SIGMA
        !           382:          IF( VALEIG ) THEN
        !           383:             VLL = VL*SIGMA
        !           384:             VUU = VU*SIGMA
        !           385:          END IF
        !           386:       END IF
        !           387: 
        !           388: *     Initialize indices into workspaces.  Note: The IWORK indices are
        !           389: *     used only if DSTERF or DSTEMR fail.
        !           390: 
        !           391: *     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
        !           392: *     elementary reflectors used in DSYTRD.
        !           393:       INDTAU = 1
        !           394: *     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
        !           395:       INDD = INDTAU + N
        !           396: *     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
        !           397: *     tridiagonal matrix from DSYTRD.
        !           398:       INDE = INDD + N
        !           399: *     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
        !           400: *     -written by DSTEMR (the DSTERF path copies the diagonal to W).
        !           401:       INDDD = INDE + N
        !           402: *     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
        !           403: *     -written while computing the eigenvalues in DSTERF and DSTEMR.
        !           404:       INDEE = INDDD + N
        !           405: *     INDWK is the starting offset of the left-over workspace, and
        !           406: *     LLWORK is the remaining workspace size.
        !           407:       INDWK = INDEE + N
        !           408:       LLWORK = LWORK - INDWK + 1
        !           409: 
        !           410: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
        !           411: *     stores the block indices of each of the M<=N eigenvalues.
        !           412:       INDIBL = 1
        !           413: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
        !           414: *     stores the starting and finishing indices of each block.
        !           415:       INDISP = INDIBL + N
        !           416: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
        !           417: *     that corresponding to eigenvectors that fail to converge in
        !           418: *     DSTEIN.  This information is discarded; if any fail, the driver
        !           419: *     returns INFO > 0.
        !           420:       INDIFL = INDISP + N
        !           421: *     INDIWO is the offset of the remaining integer workspace.
        !           422:       INDIWO = INDISP + N
        !           423: 
        !           424: *
        !           425: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
        !           426: *
        !           427:       CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
        !           428:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
        !           429: *
        !           430: *     If all eigenvalues are desired
        !           431: *     then call DSTERF or DSTEMR and DORMTR.
        !           432: *
        !           433:       IF( ( ALLEIG .OR. ( INDEIG .AND. IL.EQ.1 .AND. IU.EQ.N ) ) .AND.
        !           434:      $    IEEEOK.EQ.1 ) THEN
        !           435:          IF( .NOT.WANTZ ) THEN
        !           436:             CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
        !           437:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
        !           438:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
        !           439:          ELSE
        !           440:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
        !           441:             CALL DCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
        !           442: *
        !           443:             IF (ABSTOL .LE. TWO*N*EPS) THEN
        !           444:                TRYRAC = .TRUE.
        !           445:             ELSE
        !           446:                TRYRAC = .FALSE.
        !           447:             END IF
        !           448:             CALL DSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
        !           449:      $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
        !           450:      $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
        !           451:      $                   INFO )
        !           452: *
        !           453: *
        !           454: *
        !           455: *        Apply orthogonal matrix used in reduction to tridiagonal
        !           456: *        form to eigenvectors returned by DSTEIN.
        !           457: *
        !           458:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
        !           459:                INDWKN = INDE
        !           460:                LLWRKN = LWORK - INDWKN + 1
        !           461:                CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA,
        !           462:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
        !           463:      $                      LLWRKN, IINFO )
        !           464:             END IF
        !           465:          END IF
        !           466: *
        !           467: *
        !           468:          IF( INFO.EQ.0 ) THEN
        !           469: *           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are
        !           470: *           undefined.
        !           471:             M = N
        !           472:             GO TO 30
        !           473:          END IF
        !           474:          INFO = 0
        !           475:       END IF
        !           476: *
        !           477: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
        !           478: *     Also call DSTEBZ and DSTEIN if DSTEMR fails.
        !           479: *
        !           480:       IF( WANTZ ) THEN
        !           481:          ORDER = 'B'
        !           482:       ELSE
        !           483:          ORDER = 'E'
        !           484:       END IF
        !           485: 
        !           486:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
        !           487:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
        !           488:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
        !           489:      $             IWORK( INDIWO ), INFO )
        !           490: *
        !           491:       IF( WANTZ ) THEN
        !           492:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
        !           493:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
        !           494:      $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
        !           495:      $                INFO )
        !           496: *
        !           497: *        Apply orthogonal matrix used in reduction to tridiagonal
        !           498: *        form to eigenvectors returned by DSTEIN.
        !           499: *
        !           500:          INDWKN = INDE
        !           501:          LLWRKN = LWORK - INDWKN + 1
        !           502:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
        !           503:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
        !           504:       END IF
        !           505: *
        !           506: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           507: *
        !           508: *  Jump here if DSTEMR/DSTEIN succeeded.
        !           509:    30 CONTINUE
        !           510:       IF( ISCALE.EQ.1 ) THEN
        !           511:          IF( INFO.EQ.0 ) THEN
        !           512:             IMAX = M
        !           513:          ELSE
        !           514:             IMAX = INFO - 1
        !           515:          END IF
        !           516:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           517:       END IF
        !           518: *
        !           519: *     If eigenvalues are not in order, then sort them, along with
        !           520: *     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
        !           521: *     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
        !           522: *     not return this detailed information to the user.
        !           523: *
        !           524:       IF( WANTZ ) THEN
        !           525:          DO 50 J = 1, M - 1
        !           526:             I = 0
        !           527:             TMP1 = W( J )
        !           528:             DO 40 JJ = J + 1, M
        !           529:                IF( W( JJ ).LT.TMP1 ) THEN
        !           530:                   I = JJ
        !           531:                   TMP1 = W( JJ )
        !           532:                END IF
        !           533:    40       CONTINUE
        !           534: *
        !           535:             IF( I.NE.0 ) THEN
        !           536:                W( I ) = W( J )
        !           537:                W( J ) = TMP1
        !           538:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           539:             END IF
        !           540:    50    CONTINUE
        !           541:       END IF
        !           542: *
        !           543: *     Set WORK(1) to optimal workspace size.
        !           544: *
        !           545:       WORK( 1 ) = LWKOPT
        !           546:       IWORK( 1 ) = LIWMIN
        !           547: *
        !           548:       RETURN
        !           549: *
        !           550: *     End of DSYEVR
        !           551: *
        !           552:       END

CVSweb interface <joel.bertrand@systella.fr>