Annotation of rpl/lapack/lapack/dsyevd_2stage.f, revision 1.6

1.1       bertrand    1: *> \brief <b> DSYEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
                      2: *
                      3: *  @precisions fortran d -> s
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download DSYEVD_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE DSYEVD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
                     24: *                                IWORK, LIWORK, INFO )
                     25: *
                     26: *       IMPLICIT NONE
                     27: *
                     28: *       .. Scalar Arguments ..
                     29: *       CHARACTER          JOBZ, UPLO
                     30: *       INTEGER            INFO, LDA, LIWORK, LWORK, N
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
                     35: *       ..
                     36: *
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DSYEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
                     44: *> real symmetric matrix A using the 2stage technique for
                     45: *> the reduction to tridiagonal. If eigenvectors are desired, it uses a
                     46: *> divide and conquer algorithm.
                     47: *>
                     48: *> The divide and conquer algorithm makes very mild assumptions about
                     49: *> floating point arithmetic. It will work on machines with a guard
                     50: *> digit in add/subtract, or on those binary machines without guard
                     51: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     52: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     53: *> without guard digits, but we know of none.
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] JOBZ
                     60: *> \verbatim
                     61: *>          JOBZ is CHARACTER*1
                     62: *>          = 'N':  Compute eigenvalues only;
                     63: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     64: *>                  Not available in this release.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] UPLO
                     68: *> \verbatim
                     69: *>          UPLO is CHARACTER*1
                     70: *>          = 'U':  Upper triangle of A is stored;
                     71: *>          = 'L':  Lower triangle of A is stored.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] N
                     75: *> \verbatim
                     76: *>          N is INTEGER
                     77: *>          The order of the matrix A.  N >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in,out] A
                     81: *> \verbatim
                     82: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                     83: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     84: *>          leading N-by-N upper triangular part of A contains the
                     85: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     86: *>          the leading N-by-N lower triangular part of A contains
                     87: *>          the lower triangular part of the matrix A.
                     88: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     89: *>          orthonormal eigenvectors of the matrix A.
                     90: *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     91: *>          or the upper triangle (if UPLO='U') of A, including the
                     92: *>          diagonal, is destroyed.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDA
                     96: *> \verbatim
                     97: *>          LDA is INTEGER
                     98: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] W
                    102: *> \verbatim
                    103: *>          W is DOUBLE PRECISION array, dimension (N)
                    104: *>          If INFO = 0, the eigenvalues in ascending order.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[out] WORK
                    108: *> \verbatim
                    109: *>          WORK is DOUBLE PRECISION array,
                    110: *>                                         dimension (LWORK)
                    111: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] LWORK
                    115: *> \verbatim
                    116: *>          LWORK is INTEGER
                    117: *>          The dimension of the array WORK.
                    118: *>          If N <= 1,               LWORK must be at least 1.
                    119: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    120: *>                                   LWORK = MAX(1, dimension) where
                    121: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + 2*N+1
                    122: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
                    123: *>                                               + max(2*KD*KD, KD*NTHREADS) 
                    124: *>                                               + (KD+1)*N + 2*N+1
                    125: *>                                   where KD is the blocking size of the reduction,
                    126: *>                                   FACTOPTNB is the blocking used by the QR or LQ
                    127: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
                    128: *>                                   NTHREADS is the number of threads used when
                    129: *>                                   openMP compilation is enabled, otherwise =1.
                    130: *>          If JOBZ = 'V' and N > 1, LWORK must be at least
                    131: *>                                                1 + 6*N + 2*N**2.
                    132: *>
                    133: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    134: *>          only calculates the optimal sizes of the WORK and IWORK
                    135: *>          arrays, returns these values as the first entries of the WORK
                    136: *>          and IWORK arrays, and no error message related to LWORK or
                    137: *>          LIWORK is issued by XERBLA.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[out] IWORK
                    141: *> \verbatim
                    142: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    143: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] LIWORK
                    147: *> \verbatim
                    148: *>          LIWORK is INTEGER
                    149: *>          The dimension of the array IWORK.
                    150: *>          If N <= 1,                LIWORK must be at least 1.
                    151: *>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
                    152: *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
                    153: *>
                    154: *>          If LIWORK = -1, then a workspace query is assumed; the
                    155: *>          routine only calculates the optimal sizes of the WORK and
                    156: *>          IWORK arrays, returns these values as the first entries of
                    157: *>          the WORK and IWORK arrays, and no error message related to
                    158: *>          LWORK or LIWORK is issued by XERBLA.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] INFO
                    162: *> \verbatim
                    163: *>          INFO is INTEGER
                    164: *>          = 0:  successful exit
                    165: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    166: *>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                    167: *>                to converge; i off-diagonal elements of an intermediate
                    168: *>                tridiagonal form did not converge to zero;
                    169: *>                if INFO = i and JOBZ = 'V', then the algorithm failed
                    170: *>                to compute an eigenvalue while working on the submatrix
                    171: *>                lying in rows and columns INFO/(N+1) through
                    172: *>                mod(INFO,N+1).
                    173: *> \endverbatim
                    174: *
                    175: *  Authors:
                    176: *  ========
                    177: *
                    178: *> \author Univ. of Tennessee
                    179: *> \author Univ. of California Berkeley
                    180: *> \author Univ. of Colorado Denver
                    181: *> \author NAG Ltd.
                    182: *
                    183: *> \ingroup doubleSYeigen
                    184: *
                    185: *> \par Contributors:
                    186: *  ==================
                    187: *>
                    188: *> Jeff Rutter, Computer Science Division, University of California
                    189: *> at Berkeley, USA \n
                    190: *>  Modified by Francoise Tisseur, University of Tennessee \n
                    191: *>  Modified description of INFO. Sven, 16 Feb 05. \n
                    192: *> \par Further Details:
                    193: *  =====================
                    194: *>
                    195: *> \verbatim
                    196: *>
                    197: *>  All details about the 2stage techniques are available in:
                    198: *>
                    199: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    200: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    201: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    202: *>  of 2011 International Conference for High Performance Computing,
                    203: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    204: *>  Article 8 , 11 pages.
                    205: *>  http://doi.acm.org/10.1145/2063384.2063394
                    206: *>
                    207: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    208: *>  An improved parallel singular value algorithm and its implementation 
                    209: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    210: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    211: *>  Denver, Colorado, USA, 2013.
                    212: *>  Article 90, 12 pages.
                    213: *>  http://doi.acm.org/10.1145/2503210.2503292
                    214: *>
                    215: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    216: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    217: *>  calculations based on fine-grained memory aware tasks.
                    218: *>  International Journal of High Performance Computing Applications.
                    219: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    220: *>  http://hpc.sagepub.com/content/28/2/196 
                    221: *>
                    222: *> \endverbatim
                    223: *
                    224: *  =====================================================================
                    225:       SUBROUTINE DSYEVD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
                    226:      $                          IWORK, LIWORK, INFO )
                    227: *
                    228:       IMPLICIT NONE
                    229: *
1.6     ! bertrand  230: *  -- LAPACK driver routine --
1.1       bertrand  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    233: *
                    234: *     .. Scalar Arguments ..
                    235:       CHARACTER          JOBZ, UPLO
                    236:       INTEGER            INFO, LDA, LIWORK, LWORK, N
                    237: *     ..
                    238: *     .. Array Arguments ..
                    239:       INTEGER            IWORK( * )
                    240:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
                    241: *     ..
                    242: *
                    243: *  =====================================================================
                    244: *
                    245: *     .. Parameters ..
                    246:       DOUBLE PRECISION   ZERO, ONE
                    247:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    248: *     ..
                    249: *     .. Local Scalars ..
                    250: *
                    251:       LOGICAL            LOWER, LQUERY, WANTZ
                    252:       INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
                    253:      $                   LIWMIN, LLWORK, LLWRK2, LWMIN,
                    254:      $                   LHTRD, LWTRD, KD, IB, INDHOUS
                    255:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    256:      $                   SMLNUM
                    257: *     ..
                    258: *     .. External Functions ..
                    259:       LOGICAL            LSAME
1.3       bertrand  260:       INTEGER            ILAENV2STAGE
1.1       bertrand  261:       DOUBLE PRECISION   DLAMCH, DLANSY
1.3       bertrand  262:       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV2STAGE
1.1       bertrand  263: *     ..
                    264: *     .. External Subroutines ..
                    265:       EXTERNAL           DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF,
                    266:      $                   DSYTRD_2STAGE, XERBLA
                    267: *     ..
                    268: *     .. Intrinsic Functions ..
                    269:       INTRINSIC          MAX, SQRT
                    270: *     ..
                    271: *     .. Executable Statements ..
                    272: *
                    273: *     Test the input parameters.
                    274: *
                    275:       WANTZ = LSAME( JOBZ, 'V' )
                    276:       LOWER = LSAME( UPLO, 'L' )
                    277:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    278: *
                    279:       INFO = 0
                    280:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    281:          INFO = -1
                    282:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    283:          INFO = -2
                    284:       ELSE IF( N.LT.0 ) THEN
                    285:          INFO = -3
                    286:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    287:          INFO = -5
                    288:       END IF
                    289: *
                    290:       IF( INFO.EQ.0 ) THEN
                    291:          IF( N.LE.1 ) THEN
                    292:             LIWMIN = 1
                    293:             LWMIN = 1
                    294:          ELSE
1.3       bertrand  295:             KD    = ILAENV2STAGE( 1, 'DSYTRD_2STAGE', JOBZ,
                    296:      $                            N, -1, -1, -1 )
                    297:             IB    = ILAENV2STAGE( 2, 'DSYTRD_2STAGE', JOBZ,
                    298:      $                            N, KD, -1, -1 )
                    299:             LHTRD = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', JOBZ,
                    300:      $                            N, KD, IB, -1 )
                    301:             LWTRD = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', JOBZ,
                    302:      $                            N, KD, IB, -1 )
1.1       bertrand  303:             IF( WANTZ ) THEN
                    304:                LIWMIN = 3 + 5*N
                    305:                LWMIN = 1 + 6*N + 2*N**2
                    306:             ELSE
                    307:                LIWMIN = 1
                    308:                LWMIN = 2*N + 1 + LHTRD + LWTRD
                    309:             END IF
                    310:          END IF
                    311:          WORK( 1 )  = LWMIN
                    312:          IWORK( 1 ) = LIWMIN
                    313: *
                    314:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    315:             INFO = -8
                    316:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    317:             INFO = -10
                    318:          END IF
                    319:       END IF
                    320: *
                    321:       IF( INFO.NE.0 ) THEN
                    322:          CALL XERBLA( 'DSYEVD_2STAGE', -INFO )
                    323:          RETURN
                    324:       ELSE IF( LQUERY ) THEN
                    325:          RETURN
                    326:       END IF
                    327: *
                    328: *     Quick return if possible
                    329: *
                    330:       IF( N.EQ.0 )
                    331:      $   RETURN
                    332: *
                    333:       IF( N.EQ.1 ) THEN
                    334:          W( 1 ) = A( 1, 1 )
                    335:          IF( WANTZ )
                    336:      $      A( 1, 1 ) = ONE
                    337:          RETURN
                    338:       END IF
                    339: *
                    340: *     Get machine constants.
                    341: *
                    342:       SAFMIN = DLAMCH( 'Safe minimum' )
                    343:       EPS    = DLAMCH( 'Precision' )
                    344:       SMLNUM = SAFMIN / EPS
                    345:       BIGNUM = ONE / SMLNUM
                    346:       RMIN   = SQRT( SMLNUM )
                    347:       RMAX   = SQRT( BIGNUM )
                    348: *
                    349: *     Scale matrix to allowable range, if necessary.
                    350: *
                    351:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
                    352:       ISCALE = 0
                    353:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    354:          ISCALE = 1
                    355:          SIGMA = RMIN / ANRM
                    356:       ELSE IF( ANRM.GT.RMAX ) THEN
                    357:          ISCALE = 1
                    358:          SIGMA = RMAX / ANRM
                    359:       END IF
                    360:       IF( ISCALE.EQ.1 )
                    361:      $   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
                    362: *
                    363: *     Call DSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
                    364: *
                    365:       INDE    = 1
                    366:       INDTAU  = INDE + N
                    367:       INDHOUS = INDTAU + N
                    368:       INDWRK  = INDHOUS + LHTRD
                    369:       LLWORK  = LWORK - INDWRK + 1
                    370:       INDWK2  = INDWRK + N*N
                    371:       LLWRK2  = LWORK - INDWK2 + 1
                    372: *
                    373:       CALL DSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK( INDE ),
                    374:      $                    WORK( INDTAU ), WORK( INDHOUS ), LHTRD, 
                    375:      $                    WORK( INDWRK ), LLWORK, IINFO )
                    376: *
                    377: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    378: *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
                    379: *     tridiagonal matrix, then call DORMTR to multiply it by the
                    380: *     Householder transformations stored in A.
                    381: *
                    382:       IF( .NOT.WANTZ ) THEN
                    383:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    384:       ELSE
1.5       bertrand  385: *        Not available in this release, and argument checking should not
1.1       bertrand  386: *        let it getting here
                    387:          RETURN
                    388:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
                    389:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
                    390:          CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
                    391:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
                    392:          CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
                    393:       END IF
                    394: *
                    395: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    396: *
                    397:       IF( ISCALE.EQ.1 )
                    398:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
                    399: *
                    400:       WORK( 1 )  = LWMIN
                    401:       IWORK( 1 ) = LIWMIN
                    402: *
                    403:       RETURN
                    404: *
                    405: *     End of DSYEVD_2STAGE
                    406: *
                    407:       END

CVSweb interface <joel.bertrand@systella.fr>