File:  [local] / rpl / lapack / lapack / dsyevd.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:08 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYEVD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
   22: *                          LIWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBZ, UPLO
   26: *       INTEGER            INFO, LDA, LIWORK, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
   40: *> real symmetric matrix A. If eigenvectors are desired, it uses a
   41: *> divide and conquer algorithm.
   42: *>
   43: *> The divide and conquer algorithm makes very mild assumptions about
   44: *> floating point arithmetic. It will work on machines with a guard
   45: *> digit in add/subtract, or on those binary machines without guard
   46: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   47: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   48: *> without guard digits, but we know of none.
   49: *>
   50: *> Because of large use of BLAS of level 3, DSYEVD needs N**2 more
   51: *> workspace than DSYEVX.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] JOBZ
   58: *> \verbatim
   59: *>          JOBZ is CHARACTER*1
   60: *>          = 'N':  Compute eigenvalues only;
   61: *>          = 'V':  Compute eigenvalues and eigenvectors.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] UPLO
   65: *> \verbatim
   66: *>          UPLO is CHARACTER*1
   67: *>          = 'U':  Upper triangle of A is stored;
   68: *>          = 'L':  Lower triangle of A is stored.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] N
   72: *> \verbatim
   73: *>          N is INTEGER
   74: *>          The order of the matrix A.  N >= 0.
   75: *> \endverbatim
   76: *>
   77: *> \param[in,out] A
   78: *> \verbatim
   79: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
   80: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
   81: *>          leading N-by-N upper triangular part of A contains the
   82: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   83: *>          the leading N-by-N lower triangular part of A contains
   84: *>          the lower triangular part of the matrix A.
   85: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
   86: *>          orthonormal eigenvectors of the matrix A.
   87: *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
   88: *>          or the upper triangle (if UPLO='U') of A, including the
   89: *>          diagonal, is destroyed.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDA
   93: *> \verbatim
   94: *>          LDA is INTEGER
   95: *>          The leading dimension of the array A.  LDA >= max(1,N).
   96: *> \endverbatim
   97: *>
   98: *> \param[out] W
   99: *> \verbatim
  100: *>          W is DOUBLE PRECISION array, dimension (N)
  101: *>          If INFO = 0, the eigenvalues in ascending order.
  102: *> \endverbatim
  103: *>
  104: *> \param[out] WORK
  105: *> \verbatim
  106: *>          WORK is DOUBLE PRECISION array,
  107: *>                                         dimension (LWORK)
  108: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LWORK
  112: *> \verbatim
  113: *>          LWORK is INTEGER
  114: *>          The dimension of the array WORK.
  115: *>          If N <= 1,               LWORK must be at least 1.
  116: *>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
  117: *>          If JOBZ = 'V' and N > 1, LWORK must be at least
  118: *>                                                1 + 6*N + 2*N**2.
  119: *>
  120: *>          If LWORK = -1, then a workspace query is assumed; the routine
  121: *>          only calculates the optimal sizes of the WORK and IWORK
  122: *>          arrays, returns these values as the first entries of the WORK
  123: *>          and IWORK arrays, and no error message related to LWORK or
  124: *>          LIWORK is issued by XERBLA.
  125: *> \endverbatim
  126: *>
  127: *> \param[out] IWORK
  128: *> \verbatim
  129: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  130: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LIWORK
  134: *> \verbatim
  135: *>          LIWORK is INTEGER
  136: *>          The dimension of the array IWORK.
  137: *>          If N <= 1,                LIWORK must be at least 1.
  138: *>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
  139: *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
  140: *>
  141: *>          If LIWORK = -1, then a workspace query is assumed; the
  142: *>          routine only calculates the optimal sizes of the WORK and
  143: *>          IWORK arrays, returns these values as the first entries of
  144: *>          the WORK and IWORK arrays, and no error message related to
  145: *>          LWORK or LIWORK is issued by XERBLA.
  146: *> \endverbatim
  147: *>
  148: *> \param[out] INFO
  149: *> \verbatim
  150: *>          INFO is INTEGER
  151: *>          = 0:  successful exit
  152: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  153: *>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
  154: *>                to converge; i off-diagonal elements of an intermediate
  155: *>                tridiagonal form did not converge to zero;
  156: *>                if INFO = i and JOBZ = 'V', then the algorithm failed
  157: *>                to compute an eigenvalue while working on the submatrix
  158: *>                lying in rows and columns INFO/(N+1) through
  159: *>                mod(INFO,N+1).
  160: *> \endverbatim
  161: *
  162: *  Authors:
  163: *  ========
  164: *
  165: *> \author Univ. of Tennessee
  166: *> \author Univ. of California Berkeley
  167: *> \author Univ. of Colorado Denver
  168: *> \author NAG Ltd.
  169: *
  170: *> \ingroup doubleSYeigen
  171: *
  172: *> \par Contributors:
  173: *  ==================
  174: *>
  175: *> Jeff Rutter, Computer Science Division, University of California
  176: *> at Berkeley, USA \n
  177: *>  Modified by Francoise Tisseur, University of Tennessee \n
  178: *>  Modified description of INFO. Sven, 16 Feb 05. \n
  179: 
  180: 
  181: *>
  182: *  =====================================================================
  183:       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
  184:      $                   LIWORK, INFO )
  185: *
  186: *  -- LAPACK driver routine --
  187: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  188: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  189: *
  190: *     .. Scalar Arguments ..
  191:       CHARACTER          JOBZ, UPLO
  192:       INTEGER            INFO, LDA, LIWORK, LWORK, N
  193: *     ..
  194: *     .. Array Arguments ..
  195:       INTEGER            IWORK( * )
  196:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
  197: *     ..
  198: *
  199: *  =====================================================================
  200: *
  201: *     .. Parameters ..
  202:       DOUBLE PRECISION   ZERO, ONE
  203:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  204: *     ..
  205: *     .. Local Scalars ..
  206: *
  207:       LOGICAL            LOWER, LQUERY, WANTZ
  208:       INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
  209:      $                   LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
  210:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  211:      $                   SMLNUM
  212: *     ..
  213: *     .. External Functions ..
  214:       LOGICAL            LSAME
  215:       INTEGER            ILAENV
  216:       DOUBLE PRECISION   DLAMCH, DLANSY
  217:       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV
  218: *     ..
  219: *     .. External Subroutines ..
  220:       EXTERNAL           DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF,
  221:      $                   DSYTRD, XERBLA
  222: *     ..
  223: *     .. Intrinsic Functions ..
  224:       INTRINSIC          MAX, SQRT
  225: *     ..
  226: *     .. Executable Statements ..
  227: *
  228: *     Test the input parameters.
  229: *
  230:       WANTZ = LSAME( JOBZ, 'V' )
  231:       LOWER = LSAME( UPLO, 'L' )
  232:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  233: *
  234:       INFO = 0
  235:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  236:          INFO = -1
  237:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  238:          INFO = -2
  239:       ELSE IF( N.LT.0 ) THEN
  240:          INFO = -3
  241:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  242:          INFO = -5
  243:       END IF
  244: *
  245:       IF( INFO.EQ.0 ) THEN
  246:          IF( N.LE.1 ) THEN
  247:             LIWMIN = 1
  248:             LWMIN = 1
  249:             LOPT = LWMIN
  250:             LIOPT = LIWMIN
  251:          ELSE
  252:             IF( WANTZ ) THEN
  253:                LIWMIN = 3 + 5*N
  254:                LWMIN = 1 + 6*N + 2*N**2
  255:             ELSE
  256:                LIWMIN = 1
  257:                LWMIN = 2*N + 1
  258:             END IF
  259:             LOPT = MAX( LWMIN, 2*N +
  260:      $                  N*ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
  261:             LIOPT = LIWMIN
  262:          END IF
  263:          WORK( 1 ) = LOPT
  264:          IWORK( 1 ) = LIOPT
  265: *
  266:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  267:             INFO = -8
  268:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  269:             INFO = -10
  270:          END IF
  271:       END IF
  272: *
  273:       IF( INFO.NE.0 ) THEN
  274:          CALL XERBLA( 'DSYEVD', -INFO )
  275:          RETURN
  276:       ELSE IF( LQUERY ) THEN
  277:          RETURN
  278:       END IF
  279: *
  280: *     Quick return if possible
  281: *
  282:       IF( N.EQ.0 )
  283:      $   RETURN
  284: *
  285:       IF( N.EQ.1 ) THEN
  286:          W( 1 ) = A( 1, 1 )
  287:          IF( WANTZ )
  288:      $      A( 1, 1 ) = ONE
  289:          RETURN
  290:       END IF
  291: *
  292: *     Get machine constants.
  293: *
  294:       SAFMIN = DLAMCH( 'Safe minimum' )
  295:       EPS = DLAMCH( 'Precision' )
  296:       SMLNUM = SAFMIN / EPS
  297:       BIGNUM = ONE / SMLNUM
  298:       RMIN = SQRT( SMLNUM )
  299:       RMAX = SQRT( BIGNUM )
  300: *
  301: *     Scale matrix to allowable range, if necessary.
  302: *
  303:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  304:       ISCALE = 0
  305:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  306:          ISCALE = 1
  307:          SIGMA = RMIN / ANRM
  308:       ELSE IF( ANRM.GT.RMAX ) THEN
  309:          ISCALE = 1
  310:          SIGMA = RMAX / ANRM
  311:       END IF
  312:       IF( ISCALE.EQ.1 )
  313:      $   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
  314: *
  315: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
  316: *
  317:       INDE = 1
  318:       INDTAU = INDE + N
  319:       INDWRK = INDTAU + N
  320:       LLWORK = LWORK - INDWRK + 1
  321:       INDWK2 = INDWRK + N*N
  322:       LLWRK2 = LWORK - INDWK2 + 1
  323: *
  324:       CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
  325:      $             WORK( INDWRK ), LLWORK, IINFO )
  326: *
  327: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
  328: *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
  329: *     tridiagonal matrix, then call DORMTR to multiply it by the
  330: *     Householder transformations stored in A.
  331: *
  332:       IF( .NOT.WANTZ ) THEN
  333:          CALL DSTERF( N, W, WORK( INDE ), INFO )
  334:       ELSE
  335:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
  336:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
  337:          CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
  338:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
  339:          CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
  340:       END IF
  341: *
  342: *     If matrix was scaled, then rescale eigenvalues appropriately.
  343: *
  344:       IF( ISCALE.EQ.1 )
  345:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
  346: *
  347:       WORK( 1 ) = LOPT
  348:       IWORK( 1 ) = LIOPT
  349: *
  350:       RETURN
  351: *
  352: *     End of DSYEVD
  353: *
  354:       END

CVSweb interface <joel.bertrand@systella.fr>