File:  [local] / rpl / lapack / lapack / dsyevd.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:34 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief <b> DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYEVD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
   22: *                          LIWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBZ, UPLO
   26: *       INTEGER            INFO, LDA, LIWORK, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
   40: *> real symmetric matrix A. If eigenvectors are desired, it uses a
   41: *> divide and conquer algorithm.
   42: *>
   43: *> The divide and conquer algorithm makes very mild assumptions about
   44: *> floating point arithmetic. It will work on machines with a guard
   45: *> digit in add/subtract, or on those binary machines without guard
   46: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   47: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   48: *> without guard digits, but we know of none.
   49: *>
   50: *> Because of large use of BLAS of level 3, DSYEVD needs N**2 more
   51: *> workspace than DSYEVX.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] JOBZ
   58: *> \verbatim
   59: *>          JOBZ is CHARACTER*1
   60: *>          = 'N':  Compute eigenvalues only;
   61: *>          = 'V':  Compute eigenvalues and eigenvectors.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] UPLO
   65: *> \verbatim
   66: *>          UPLO is CHARACTER*1
   67: *>          = 'U':  Upper triangle of A is stored;
   68: *>          = 'L':  Lower triangle of A is stored.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] N
   72: *> \verbatim
   73: *>          N is INTEGER
   74: *>          The order of the matrix A.  N >= 0.
   75: *> \endverbatim
   76: *>
   77: *> \param[in,out] A
   78: *> \verbatim
   79: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
   80: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
   81: *>          leading N-by-N upper triangular part of A contains the
   82: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   83: *>          the leading N-by-N lower triangular part of A contains
   84: *>          the lower triangular part of the matrix A.
   85: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
   86: *>          orthonormal eigenvectors of the matrix A.
   87: *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
   88: *>          or the upper triangle (if UPLO='U') of A, including the
   89: *>          diagonal, is destroyed.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDA
   93: *> \verbatim
   94: *>          LDA is INTEGER
   95: *>          The leading dimension of the array A.  LDA >= max(1,N).
   96: *> \endverbatim
   97: *>
   98: *> \param[out] W
   99: *> \verbatim
  100: *>          W is DOUBLE PRECISION array, dimension (N)
  101: *>          If INFO = 0, the eigenvalues in ascending order.
  102: *> \endverbatim
  103: *>
  104: *> \param[out] WORK
  105: *> \verbatim
  106: *>          WORK is DOUBLE PRECISION array,
  107: *>                                         dimension (LWORK)
  108: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LWORK
  112: *> \verbatim
  113: *>          LWORK is INTEGER
  114: *>          The dimension of the array WORK.
  115: *>          If N <= 1,               LWORK must be at least 1.
  116: *>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
  117: *>          If JOBZ = 'V' and N > 1, LWORK must be at least
  118: *>                                                1 + 6*N + 2*N**2.
  119: *>
  120: *>          If LWORK = -1, then a workspace query is assumed; the routine
  121: *>          only calculates the optimal sizes of the WORK and IWORK
  122: *>          arrays, returns these values as the first entries of the WORK
  123: *>          and IWORK arrays, and no error message related to LWORK or
  124: *>          LIWORK is issued by XERBLA.
  125: *> \endverbatim
  126: *>
  127: *> \param[out] IWORK
  128: *> \verbatim
  129: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  130: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LIWORK
  134: *> \verbatim
  135: *>          LIWORK is INTEGER
  136: *>          The dimension of the array IWORK.
  137: *>          If N <= 1,                LIWORK must be at least 1.
  138: *>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
  139: *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
  140: *>
  141: *>          If LIWORK = -1, then a workspace query is assumed; the
  142: *>          routine only calculates the optimal sizes of the WORK and
  143: *>          IWORK arrays, returns these values as the first entries of
  144: *>          the WORK and IWORK arrays, and no error message related to
  145: *>          LWORK or LIWORK is issued by XERBLA.
  146: *> \endverbatim
  147: *>
  148: *> \param[out] INFO
  149: *> \verbatim
  150: *>          INFO is INTEGER
  151: *>          = 0:  successful exit
  152: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  153: *>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
  154: *>                to converge; i off-diagonal elements of an intermediate
  155: *>                tridiagonal form did not converge to zero;
  156: *>                if INFO = i and JOBZ = 'V', then the algorithm failed
  157: *>                to compute an eigenvalue while working on the submatrix
  158: *>                lying in rows and columns INFO/(N+1) through
  159: *>                mod(INFO,N+1).
  160: *> \endverbatim
  161: *
  162: *  Authors:
  163: *  ========
  164: *
  165: *> \author Univ. of Tennessee
  166: *> \author Univ. of California Berkeley
  167: *> \author Univ. of Colorado Denver
  168: *> \author NAG Ltd.
  169: *
  170: *> \date December 2016
  171: *
  172: *> \ingroup doubleSYeigen
  173: *
  174: *> \par Contributors:
  175: *  ==================
  176: *>
  177: *> Jeff Rutter, Computer Science Division, University of California
  178: *> at Berkeley, USA \n
  179: *>  Modified by Francoise Tisseur, University of Tennessee \n
  180: *>  Modified description of INFO. Sven, 16 Feb 05. \n
  181: 
  182: 
  183: *>
  184: *  =====================================================================
  185:       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
  186:      $                   LIWORK, INFO )
  187: *
  188: *  -- LAPACK driver routine (version 3.7.0) --
  189: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  191: *     December 2016
  192: *
  193: *     .. Scalar Arguments ..
  194:       CHARACTER          JOBZ, UPLO
  195:       INTEGER            INFO, LDA, LIWORK, LWORK, N
  196: *     ..
  197: *     .. Array Arguments ..
  198:       INTEGER            IWORK( * )
  199:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
  200: *     ..
  201: *
  202: *  =====================================================================
  203: *
  204: *     .. Parameters ..
  205:       DOUBLE PRECISION   ZERO, ONE
  206:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  207: *     ..
  208: *     .. Local Scalars ..
  209: *
  210:       LOGICAL            LOWER, LQUERY, WANTZ
  211:       INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
  212:      $                   LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
  213:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  214:      $                   SMLNUM
  215: *     ..
  216: *     .. External Functions ..
  217:       LOGICAL            LSAME
  218:       INTEGER            ILAENV
  219:       DOUBLE PRECISION   DLAMCH, DLANSY
  220:       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV
  221: *     ..
  222: *     .. External Subroutines ..
  223:       EXTERNAL           DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF,
  224:      $                   DSYTRD, XERBLA
  225: *     ..
  226: *     .. Intrinsic Functions ..
  227:       INTRINSIC          MAX, SQRT
  228: *     ..
  229: *     .. Executable Statements ..
  230: *
  231: *     Test the input parameters.
  232: *
  233:       WANTZ = LSAME( JOBZ, 'V' )
  234:       LOWER = LSAME( UPLO, 'L' )
  235:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  236: *
  237:       INFO = 0
  238:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  239:          INFO = -1
  240:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  241:          INFO = -2
  242:       ELSE IF( N.LT.0 ) THEN
  243:          INFO = -3
  244:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  245:          INFO = -5
  246:       END IF
  247: *
  248:       IF( INFO.EQ.0 ) THEN
  249:          IF( N.LE.1 ) THEN
  250:             LIWMIN = 1
  251:             LWMIN = 1
  252:             LOPT = LWMIN
  253:             LIOPT = LIWMIN
  254:          ELSE
  255:             IF( WANTZ ) THEN
  256:                LIWMIN = 3 + 5*N
  257:                LWMIN = 1 + 6*N + 2*N**2
  258:             ELSE
  259:                LIWMIN = 1
  260:                LWMIN = 2*N + 1
  261:             END IF
  262:             LOPT = MAX( LWMIN, 2*N +
  263:      $                  ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
  264:             LIOPT = LIWMIN
  265:          END IF
  266:          WORK( 1 ) = LOPT
  267:          IWORK( 1 ) = LIOPT
  268: *
  269:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  270:             INFO = -8
  271:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  272:             INFO = -10
  273:          END IF
  274:       END IF
  275: *
  276:       IF( INFO.NE.0 ) THEN
  277:          CALL XERBLA( 'DSYEVD', -INFO )
  278:          RETURN
  279:       ELSE IF( LQUERY ) THEN
  280:          RETURN
  281:       END IF
  282: *
  283: *     Quick return if possible
  284: *
  285:       IF( N.EQ.0 )
  286:      $   RETURN
  287: *
  288:       IF( N.EQ.1 ) THEN
  289:          W( 1 ) = A( 1, 1 )
  290:          IF( WANTZ )
  291:      $      A( 1, 1 ) = ONE
  292:          RETURN
  293:       END IF
  294: *
  295: *     Get machine constants.
  296: *
  297:       SAFMIN = DLAMCH( 'Safe minimum' )
  298:       EPS = DLAMCH( 'Precision' )
  299:       SMLNUM = SAFMIN / EPS
  300:       BIGNUM = ONE / SMLNUM
  301:       RMIN = SQRT( SMLNUM )
  302:       RMAX = SQRT( BIGNUM )
  303: *
  304: *     Scale matrix to allowable range, if necessary.
  305: *
  306:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  307:       ISCALE = 0
  308:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  309:          ISCALE = 1
  310:          SIGMA = RMIN / ANRM
  311:       ELSE IF( ANRM.GT.RMAX ) THEN
  312:          ISCALE = 1
  313:          SIGMA = RMAX / ANRM
  314:       END IF
  315:       IF( ISCALE.EQ.1 )
  316:      $   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
  317: *
  318: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
  319: *
  320:       INDE = 1
  321:       INDTAU = INDE + N
  322:       INDWRK = INDTAU + N
  323:       LLWORK = LWORK - INDWRK + 1
  324:       INDWK2 = INDWRK + N*N
  325:       LLWRK2 = LWORK - INDWK2 + 1
  326: *
  327:       CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
  328:      $             WORK( INDWRK ), LLWORK, IINFO )
  329: *
  330: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
  331: *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
  332: *     tridiagonal matrix, then call DORMTR to multiply it by the
  333: *     Householder transformations stored in A.
  334: *
  335:       IF( .NOT.WANTZ ) THEN
  336:          CALL DSTERF( N, W, WORK( INDE ), INFO )
  337:       ELSE
  338:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
  339:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
  340:          CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
  341:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
  342:          CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
  343:       END IF
  344: *
  345: *     If matrix was scaled, then rescale eigenvalues appropriately.
  346: *
  347:       IF( ISCALE.EQ.1 )
  348:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
  349: *
  350:       WORK( 1 ) = LOPT
  351:       IWORK( 1 ) = LIOPT
  352: *
  353:       RETURN
  354: *
  355: *     End of DSYEVD
  356: *
  357:       END

CVSweb interface <joel.bertrand@systella.fr>