Annotation of rpl/lapack/lapack/dsyevd.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
                      2:      $                   LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, LDA, LIWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
                     22: *  real symmetric matrix A. If eigenvectors are desired, it uses a
                     23: *  divide and conquer algorithm.
                     24: *
                     25: *  The divide and conquer algorithm makes very mild assumptions about
                     26: *  floating point arithmetic. It will work on machines with a guard
                     27: *  digit in add/subtract, or on those binary machines without guard
                     28: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     29: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     30: *  without guard digits, but we know of none.
                     31: *
                     32: *  Because of large use of BLAS of level 3, DSYEVD needs N**2 more
                     33: *  workspace than DSYEVX.
                     34: *
                     35: *  Arguments
                     36: *  =========
                     37: *
                     38: *  JOBZ    (input) CHARACTER*1
                     39: *          = 'N':  Compute eigenvalues only;
                     40: *          = 'V':  Compute eigenvalues and eigenvectors.
                     41: *
                     42: *  UPLO    (input) CHARACTER*1
                     43: *          = 'U':  Upper triangle of A is stored;
                     44: *          = 'L':  Lower triangle of A is stored.
                     45: *
                     46: *  N       (input) INTEGER
                     47: *          The order of the matrix A.  N >= 0.
                     48: *
                     49: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     50: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     51: *          leading N-by-N upper triangular part of A contains the
                     52: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     53: *          the leading N-by-N lower triangular part of A contains
                     54: *          the lower triangular part of the matrix A.
                     55: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     56: *          orthonormal eigenvectors of the matrix A.
                     57: *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     58: *          or the upper triangle (if UPLO='U') of A, including the
                     59: *          diagonal, is destroyed.
                     60: *
                     61: *  LDA     (input) INTEGER
                     62: *          The leading dimension of the array A.  LDA >= max(1,N).
                     63: *
                     64: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     65: *          If INFO = 0, the eigenvalues in ascending order.
                     66: *
                     67: *  WORK    (workspace/output) DOUBLE PRECISION array,
                     68: *                                         dimension (LWORK)
                     69: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     70: *
                     71: *  LWORK   (input) INTEGER
                     72: *          The dimension of the array WORK.
                     73: *          If N <= 1,               LWORK must be at least 1.
                     74: *          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
                     75: *          If JOBZ = 'V' and N > 1, LWORK must be at least
                     76: *                                                1 + 6*N + 2*N**2.
                     77: *
                     78: *          If LWORK = -1, then a workspace query is assumed; the routine
                     79: *          only calculates the optimal sizes of the WORK and IWORK
                     80: *          arrays, returns these values as the first entries of the WORK
                     81: *          and IWORK arrays, and no error message related to LWORK or
                     82: *          LIWORK is issued by XERBLA.
                     83: *
                     84: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                     85: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                     86: *
                     87: *  LIWORK  (input) INTEGER
                     88: *          The dimension of the array IWORK.
                     89: *          If N <= 1,                LIWORK must be at least 1.
                     90: *          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
                     91: *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
                     92: *
                     93: *          If LIWORK = -1, then a workspace query is assumed; the
                     94: *          routine only calculates the optimal sizes of the WORK and
                     95: *          IWORK arrays, returns these values as the first entries of
                     96: *          the WORK and IWORK arrays, and no error message related to
                     97: *          LWORK or LIWORK is issued by XERBLA.
                     98: *
                     99: *  INFO    (output) INTEGER
                    100: *          = 0:  successful exit
                    101: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    102: *          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                    103: *                to converge; i off-diagonal elements of an intermediate
                    104: *                tridiagonal form did not converge to zero;
                    105: *                if INFO = i and JOBZ = 'V', then the algorithm failed
                    106: *                to compute an eigenvalue while working on the submatrix
                    107: *                lying in rows and columns INFO/(N+1) through
                    108: *                mod(INFO,N+1).
                    109: *
                    110: *  Further Details
                    111: *  ===============
                    112: *
                    113: *  Based on contributions by
                    114: *     Jeff Rutter, Computer Science Division, University of California
                    115: *     at Berkeley, USA
                    116: *  Modified by Francoise Tisseur, University of Tennessee.
                    117: *
                    118: *  Modified description of INFO. Sven, 16 Feb 05.
                    119: *  =====================================================================
                    120: *
                    121: *     .. Parameters ..
                    122:       DOUBLE PRECISION   ZERO, ONE
                    123:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    124: *     ..
                    125: *     .. Local Scalars ..
                    126: *
                    127:       LOGICAL            LOWER, LQUERY, WANTZ
                    128:       INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
                    129:      $                   LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
                    130:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    131:      $                   SMLNUM
                    132: *     ..
                    133: *     .. External Functions ..
                    134:       LOGICAL            LSAME
                    135:       INTEGER            ILAENV
                    136:       DOUBLE PRECISION   DLAMCH, DLANSY
                    137:       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV
                    138: *     ..
                    139: *     .. External Subroutines ..
                    140:       EXTERNAL           DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF,
                    141:      $                   DSYTRD, XERBLA
                    142: *     ..
                    143: *     .. Intrinsic Functions ..
                    144:       INTRINSIC          MAX, SQRT
                    145: *     ..
                    146: *     .. Executable Statements ..
                    147: *
                    148: *     Test the input parameters.
                    149: *
                    150:       WANTZ = LSAME( JOBZ, 'V' )
                    151:       LOWER = LSAME( UPLO, 'L' )
                    152:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    153: *
                    154:       INFO = 0
                    155:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    156:          INFO = -1
                    157:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    158:          INFO = -2
                    159:       ELSE IF( N.LT.0 ) THEN
                    160:          INFO = -3
                    161:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    162:          INFO = -5
                    163:       END IF
                    164: *
                    165:       IF( INFO.EQ.0 ) THEN
                    166:          IF( N.LE.1 ) THEN
                    167:             LIWMIN = 1
                    168:             LWMIN = 1
                    169:             LOPT = LWMIN
                    170:             LIOPT = LIWMIN
                    171:          ELSE
                    172:             IF( WANTZ ) THEN
                    173:                LIWMIN = 3 + 5*N
                    174:                LWMIN = 1 + 6*N + 2*N**2
                    175:             ELSE
                    176:                LIWMIN = 1
                    177:                LWMIN = 2*N + 1
                    178:             END IF
                    179:             LOPT = MAX( LWMIN, 2*N +
                    180:      $                  ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
                    181:             LIOPT = LIWMIN
                    182:          END IF
                    183:          WORK( 1 ) = LOPT
                    184:          IWORK( 1 ) = LIOPT
                    185: *
                    186:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    187:             INFO = -8
                    188:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    189:             INFO = -10
                    190:          END IF
                    191:       END IF
                    192: *
                    193:       IF( INFO.NE.0 ) THEN
                    194:          CALL XERBLA( 'DSYEVD', -INFO )
                    195:          RETURN
                    196:       ELSE IF( LQUERY ) THEN
                    197:          RETURN
                    198:       END IF
                    199: *
                    200: *     Quick return if possible
                    201: *
                    202:       IF( N.EQ.0 )
                    203:      $   RETURN
                    204: *
                    205:       IF( N.EQ.1 ) THEN
                    206:          W( 1 ) = A( 1, 1 )
                    207:          IF( WANTZ )
                    208:      $      A( 1, 1 ) = ONE
                    209:          RETURN
                    210:       END IF
                    211: *
                    212: *     Get machine constants.
                    213: *
                    214:       SAFMIN = DLAMCH( 'Safe minimum' )
                    215:       EPS = DLAMCH( 'Precision' )
                    216:       SMLNUM = SAFMIN / EPS
                    217:       BIGNUM = ONE / SMLNUM
                    218:       RMIN = SQRT( SMLNUM )
                    219:       RMAX = SQRT( BIGNUM )
                    220: *
                    221: *     Scale matrix to allowable range, if necessary.
                    222: *
                    223:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
                    224:       ISCALE = 0
                    225:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    226:          ISCALE = 1
                    227:          SIGMA = RMIN / ANRM
                    228:       ELSE IF( ANRM.GT.RMAX ) THEN
                    229:          ISCALE = 1
                    230:          SIGMA = RMAX / ANRM
                    231:       END IF
                    232:       IF( ISCALE.EQ.1 )
                    233:      $   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
                    234: *
                    235: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
                    236: *
                    237:       INDE = 1
                    238:       INDTAU = INDE + N
                    239:       INDWRK = INDTAU + N
                    240:       LLWORK = LWORK - INDWRK + 1
                    241:       INDWK2 = INDWRK + N*N
                    242:       LLWRK2 = LWORK - INDWK2 + 1
                    243: *
                    244:       CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
                    245:      $             WORK( INDWRK ), LLWORK, IINFO )
                    246:       LOPT = 2*N + WORK( INDWRK )
                    247: *
                    248: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    249: *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
                    250: *     tridiagonal matrix, then call DORMTR to multiply it by the
                    251: *     Householder transformations stored in A.
                    252: *
                    253:       IF( .NOT.WANTZ ) THEN
                    254:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    255:       ELSE
                    256:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
                    257:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
                    258:          CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
                    259:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
                    260:          CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
                    261:          LOPT = MAX( LOPT, 1+6*N+2*N**2 )
                    262:       END IF
                    263: *
                    264: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    265: *
                    266:       IF( ISCALE.EQ.1 )
                    267:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
                    268: *
                    269:       WORK( 1 ) = LOPT
                    270:       IWORK( 1 ) = LIOPT
                    271: *
                    272:       RETURN
                    273: *
                    274: *     End of DSYEVD
                    275: *
                    276:       END

CVSweb interface <joel.bertrand@systella.fr>