Annotation of rpl/lapack/lapack/dsyevd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
        !             2:      $                   LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, LDA, LIWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
        !            22: *  real symmetric matrix A. If eigenvectors are desired, it uses a
        !            23: *  divide and conquer algorithm.
        !            24: *
        !            25: *  The divide and conquer algorithm makes very mild assumptions about
        !            26: *  floating point arithmetic. It will work on machines with a guard
        !            27: *  digit in add/subtract, or on those binary machines without guard
        !            28: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            29: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            30: *  without guard digits, but we know of none.
        !            31: *
        !            32: *  Because of large use of BLAS of level 3, DSYEVD needs N**2 more
        !            33: *  workspace than DSYEVX.
        !            34: *
        !            35: *  Arguments
        !            36: *  =========
        !            37: *
        !            38: *  JOBZ    (input) CHARACTER*1
        !            39: *          = 'N':  Compute eigenvalues only;
        !            40: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            41: *
        !            42: *  UPLO    (input) CHARACTER*1
        !            43: *          = 'U':  Upper triangle of A is stored;
        !            44: *          = 'L':  Lower triangle of A is stored.
        !            45: *
        !            46: *  N       (input) INTEGER
        !            47: *          The order of the matrix A.  N >= 0.
        !            48: *
        !            49: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !            50: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
        !            51: *          leading N-by-N upper triangular part of A contains the
        !            52: *          upper triangular part of the matrix A.  If UPLO = 'L',
        !            53: *          the leading N-by-N lower triangular part of A contains
        !            54: *          the lower triangular part of the matrix A.
        !            55: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            56: *          orthonormal eigenvectors of the matrix A.
        !            57: *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
        !            58: *          or the upper triangle (if UPLO='U') of A, including the
        !            59: *          diagonal, is destroyed.
        !            60: *
        !            61: *  LDA     (input) INTEGER
        !            62: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            63: *
        !            64: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            65: *          If INFO = 0, the eigenvalues in ascending order.
        !            66: *
        !            67: *  WORK    (workspace/output) DOUBLE PRECISION array,
        !            68: *                                         dimension (LWORK)
        !            69: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            70: *
        !            71: *  LWORK   (input) INTEGER
        !            72: *          The dimension of the array WORK.
        !            73: *          If N <= 1,               LWORK must be at least 1.
        !            74: *          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
        !            75: *          If JOBZ = 'V' and N > 1, LWORK must be at least
        !            76: *                                                1 + 6*N + 2*N**2.
        !            77: *
        !            78: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            79: *          only calculates the optimal sizes of the WORK and IWORK
        !            80: *          arrays, returns these values as the first entries of the WORK
        !            81: *          and IWORK arrays, and no error message related to LWORK or
        !            82: *          LIWORK is issued by XERBLA.
        !            83: *
        !            84: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !            85: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !            86: *
        !            87: *  LIWORK  (input) INTEGER
        !            88: *          The dimension of the array IWORK.
        !            89: *          If N <= 1,                LIWORK must be at least 1.
        !            90: *          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
        !            91: *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
        !            92: *
        !            93: *          If LIWORK = -1, then a workspace query is assumed; the
        !            94: *          routine only calculates the optimal sizes of the WORK and
        !            95: *          IWORK arrays, returns these values as the first entries of
        !            96: *          the WORK and IWORK arrays, and no error message related to
        !            97: *          LWORK or LIWORK is issued by XERBLA.
        !            98: *
        !            99: *  INFO    (output) INTEGER
        !           100: *          = 0:  successful exit
        !           101: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           102: *          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
        !           103: *                to converge; i off-diagonal elements of an intermediate
        !           104: *                tridiagonal form did not converge to zero;
        !           105: *                if INFO = i and JOBZ = 'V', then the algorithm failed
        !           106: *                to compute an eigenvalue while working on the submatrix
        !           107: *                lying in rows and columns INFO/(N+1) through
        !           108: *                mod(INFO,N+1).
        !           109: *
        !           110: *  Further Details
        !           111: *  ===============
        !           112: *
        !           113: *  Based on contributions by
        !           114: *     Jeff Rutter, Computer Science Division, University of California
        !           115: *     at Berkeley, USA
        !           116: *  Modified by Francoise Tisseur, University of Tennessee.
        !           117: *
        !           118: *  Modified description of INFO. Sven, 16 Feb 05.
        !           119: *  =====================================================================
        !           120: *
        !           121: *     .. Parameters ..
        !           122:       DOUBLE PRECISION   ZERO, ONE
        !           123:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           124: *     ..
        !           125: *     .. Local Scalars ..
        !           126: *
        !           127:       LOGICAL            LOWER, LQUERY, WANTZ
        !           128:       INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
        !           129:      $                   LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
        !           130:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
        !           131:      $                   SMLNUM
        !           132: *     ..
        !           133: *     .. External Functions ..
        !           134:       LOGICAL            LSAME
        !           135:       INTEGER            ILAENV
        !           136:       DOUBLE PRECISION   DLAMCH, DLANSY
        !           137:       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV
        !           138: *     ..
        !           139: *     .. External Subroutines ..
        !           140:       EXTERNAL           DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF,
        !           141:      $                   DSYTRD, XERBLA
        !           142: *     ..
        !           143: *     .. Intrinsic Functions ..
        !           144:       INTRINSIC          MAX, SQRT
        !           145: *     ..
        !           146: *     .. Executable Statements ..
        !           147: *
        !           148: *     Test the input parameters.
        !           149: *
        !           150:       WANTZ = LSAME( JOBZ, 'V' )
        !           151:       LOWER = LSAME( UPLO, 'L' )
        !           152:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           153: *
        !           154:       INFO = 0
        !           155:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           156:          INFO = -1
        !           157:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           158:          INFO = -2
        !           159:       ELSE IF( N.LT.0 ) THEN
        !           160:          INFO = -3
        !           161:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           162:          INFO = -5
        !           163:       END IF
        !           164: *
        !           165:       IF( INFO.EQ.0 ) THEN
        !           166:          IF( N.LE.1 ) THEN
        !           167:             LIWMIN = 1
        !           168:             LWMIN = 1
        !           169:             LOPT = LWMIN
        !           170:             LIOPT = LIWMIN
        !           171:          ELSE
        !           172:             IF( WANTZ ) THEN
        !           173:                LIWMIN = 3 + 5*N
        !           174:                LWMIN = 1 + 6*N + 2*N**2
        !           175:             ELSE
        !           176:                LIWMIN = 1
        !           177:                LWMIN = 2*N + 1
        !           178:             END IF
        !           179:             LOPT = MAX( LWMIN, 2*N +
        !           180:      $                  ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
        !           181:             LIOPT = LIWMIN
        !           182:          END IF
        !           183:          WORK( 1 ) = LOPT
        !           184:          IWORK( 1 ) = LIOPT
        !           185: *
        !           186:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           187:             INFO = -8
        !           188:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           189:             INFO = -10
        !           190:          END IF
        !           191:       END IF
        !           192: *
        !           193:       IF( INFO.NE.0 ) THEN
        !           194:          CALL XERBLA( 'DSYEVD', -INFO )
        !           195:          RETURN
        !           196:       ELSE IF( LQUERY ) THEN
        !           197:          RETURN
        !           198:       END IF
        !           199: *
        !           200: *     Quick return if possible
        !           201: *
        !           202:       IF( N.EQ.0 )
        !           203:      $   RETURN
        !           204: *
        !           205:       IF( N.EQ.1 ) THEN
        !           206:          W( 1 ) = A( 1, 1 )
        !           207:          IF( WANTZ )
        !           208:      $      A( 1, 1 ) = ONE
        !           209:          RETURN
        !           210:       END IF
        !           211: *
        !           212: *     Get machine constants.
        !           213: *
        !           214:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           215:       EPS = DLAMCH( 'Precision' )
        !           216:       SMLNUM = SAFMIN / EPS
        !           217:       BIGNUM = ONE / SMLNUM
        !           218:       RMIN = SQRT( SMLNUM )
        !           219:       RMAX = SQRT( BIGNUM )
        !           220: *
        !           221: *     Scale matrix to allowable range, if necessary.
        !           222: *
        !           223:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
        !           224:       ISCALE = 0
        !           225:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           226:          ISCALE = 1
        !           227:          SIGMA = RMIN / ANRM
        !           228:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           229:          ISCALE = 1
        !           230:          SIGMA = RMAX / ANRM
        !           231:       END IF
        !           232:       IF( ISCALE.EQ.1 )
        !           233:      $   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
        !           234: *
        !           235: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
        !           236: *
        !           237:       INDE = 1
        !           238:       INDTAU = INDE + N
        !           239:       INDWRK = INDTAU + N
        !           240:       LLWORK = LWORK - INDWRK + 1
        !           241:       INDWK2 = INDWRK + N*N
        !           242:       LLWRK2 = LWORK - INDWK2 + 1
        !           243: *
        !           244:       CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
        !           245:      $             WORK( INDWRK ), LLWORK, IINFO )
        !           246:       LOPT = 2*N + WORK( INDWRK )
        !           247: *
        !           248: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
        !           249: *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
        !           250: *     tridiagonal matrix, then call DORMTR to multiply it by the
        !           251: *     Householder transformations stored in A.
        !           252: *
        !           253:       IF( .NOT.WANTZ ) THEN
        !           254:          CALL DSTERF( N, W, WORK( INDE ), INFO )
        !           255:       ELSE
        !           256:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
        !           257:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
        !           258:          CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
        !           259:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
        !           260:          CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
        !           261:          LOPT = MAX( LOPT, 1+6*N+2*N**2 )
        !           262:       END IF
        !           263: *
        !           264: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           265: *
        !           266:       IF( ISCALE.EQ.1 )
        !           267:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
        !           268: *
        !           269:       WORK( 1 ) = LOPT
        !           270:       IWORK( 1 ) = LIOPT
        !           271: *
        !           272:       RETURN
        !           273: *
        !           274: *     End of DSYEVD
        !           275: *
        !           276:       END

CVSweb interface <joel.bertrand@systella.fr>