Diff for /rpl/lapack/lapack/dsyevd.f between versions 1.5 and 1.18

version 1.5, 2010/08/07 13:22:26 version 1.18, 2023/08/07 08:39:08
Line 1 Line 1
   *> \brief <b> DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at
   *            http://www.netlib.org/lapack/explore-html/
   *
   *> \htmlonly
   *> Download DSYEVD + dependencies
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd.f">
   *> [TGZ]</a>
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd.f">
   *> [ZIP]</a>
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd.f">
   *> [TXT]</a>
   *> \endhtmlonly
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
   *                          LIWORK, INFO )
   *
   *       .. Scalar Arguments ..
   *       CHARACTER          JOBZ, UPLO
   *       INTEGER            INFO, LDA, LIWORK, LWORK, N
   *       ..
   *       .. Array Arguments ..
   *       INTEGER            IWORK( * )
   *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
   *       ..
   *
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
   *> real symmetric matrix A. If eigenvectors are desired, it uses a
   *> divide and conquer algorithm.
   *>
   *> The divide and conquer algorithm makes very mild assumptions about
   *> floating point arithmetic. It will work on machines with a guard
   *> digit in add/subtract, or on those binary machines without guard
   *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   *> without guard digits, but we know of none.
   *>
   *> Because of large use of BLAS of level 3, DSYEVD needs N**2 more
   *> workspace than DSYEVX.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] JOBZ
   *> \verbatim
   *>          JOBZ is CHARACTER*1
   *>          = 'N':  Compute eigenvalues only;
   *>          = 'V':  Compute eigenvalues and eigenvectors.
   *> \endverbatim
   *>
   *> \param[in] UPLO
   *> \verbatim
   *>          UPLO is CHARACTER*1
   *>          = 'U':  Upper triangle of A is stored;
   *>          = 'L':  Lower triangle of A is stored.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The order of the matrix A.  N >= 0.
   *> \endverbatim
   *>
   *> \param[in,out] A
   *> \verbatim
   *>          A is DOUBLE PRECISION array, dimension (LDA, N)
   *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
   *>          leading N-by-N upper triangular part of A contains the
   *>          upper triangular part of the matrix A.  If UPLO = 'L',
   *>          the leading N-by-N lower triangular part of A contains
   *>          the lower triangular part of the matrix A.
   *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
   *>          orthonormal eigenvectors of the matrix A.
   *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
   *>          or the upper triangle (if UPLO='U') of A, including the
   *>          diagonal, is destroyed.
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>          The leading dimension of the array A.  LDA >= max(1,N).
   *> \endverbatim
   *>
   *> \param[out] W
   *> \verbatim
   *>          W is DOUBLE PRECISION array, dimension (N)
   *>          If INFO = 0, the eigenvalues in ascending order.
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is DOUBLE PRECISION array,
   *>                                         dimension (LWORK)
   *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   *> \endverbatim
   *>
   *> \param[in] LWORK
   *> \verbatim
   *>          LWORK is INTEGER
   *>          The dimension of the array WORK.
   *>          If N <= 1,               LWORK must be at least 1.
   *>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
   *>          If JOBZ = 'V' and N > 1, LWORK must be at least
   *>                                                1 + 6*N + 2*N**2.
   *>
   *>          If LWORK = -1, then a workspace query is assumed; the routine
   *>          only calculates the optimal sizes of the WORK and IWORK
   *>          arrays, returns these values as the first entries of the WORK
   *>          and IWORK arrays, and no error message related to LWORK or
   *>          LIWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] IWORK
   *> \verbatim
   *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
   *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
   *> \endverbatim
   *>
   *> \param[in] LIWORK
   *> \verbatim
   *>          LIWORK is INTEGER
   *>          The dimension of the array IWORK.
   *>          If N <= 1,                LIWORK must be at least 1.
   *>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
   *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
   *>
   *>          If LIWORK = -1, then a workspace query is assumed; the
   *>          routine only calculates the optimal sizes of the WORK and
   *>          IWORK arrays, returns these values as the first entries of
   *>          the WORK and IWORK arrays, and no error message related to
   *>          LWORK or LIWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>          = 0:  successful exit
   *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   *>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
   *>                to converge; i off-diagonal elements of an intermediate
   *>                tridiagonal form did not converge to zero;
   *>                if INFO = i and JOBZ = 'V', then the algorithm failed
   *>                to compute an eigenvalue while working on the submatrix
   *>                lying in rows and columns INFO/(N+1) through
   *>                mod(INFO,N+1).
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee
   *> \author Univ. of California Berkeley
   *> \author Univ. of Colorado Denver
   *> \author NAG Ltd.
   *
   *> \ingroup doubleSYeigen
   *
   *> \par Contributors:
   *  ==================
   *>
   *> Jeff Rutter, Computer Science Division, University of California
   *> at Berkeley, USA \n
   *>  Modified by Francoise Tisseur, University of Tennessee \n
   *>  Modified description of INFO. Sven, 16 Feb 05. \n
   
   
   *>
   *  =====================================================================
       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,        SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
      $                   LIWORK, INFO )       $                   LIWORK, INFO )
 *  *
 *  -- LAPACK driver routine (version 3.2) --  *  -- LAPACK driver routine --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     November 2006  
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       CHARACTER          JOBZ, UPLO        CHARACTER          JOBZ, UPLO
Line 15 Line 196
       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )        DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  DSYEVD computes all eigenvalues and, optionally, eigenvectors of a  
 *  real symmetric matrix A. If eigenvectors are desired, it uses a  
 *  divide and conquer algorithm.  
 *  
 *  The divide and conquer algorithm makes very mild assumptions about  
 *  floating point arithmetic. It will work on machines with a guard  
 *  digit in add/subtract, or on those binary machines without guard  
 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or  
 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines  
 *  without guard digits, but we know of none.  
 *  
 *  Because of large use of BLAS of level 3, DSYEVD needs N**2 more  
 *  workspace than DSYEVX.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  JOBZ    (input) CHARACTER*1  
 *          = 'N':  Compute eigenvalues only;  
 *          = 'V':  Compute eigenvalues and eigenvectors.  
 *  
 *  UPLO    (input) CHARACTER*1  
 *          = 'U':  Upper triangle of A is stored;  
 *          = 'L':  Lower triangle of A is stored.  
 *  
 *  N       (input) INTEGER  
 *          The order of the matrix A.  N >= 0.  
 *  
 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)  
 *          On entry, the symmetric matrix A.  If UPLO = 'U', the  
 *          leading N-by-N upper triangular part of A contains the  
 *          upper triangular part of the matrix A.  If UPLO = 'L',  
 *          the leading N-by-N lower triangular part of A contains  
 *          the lower triangular part of the matrix A.  
 *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the  
 *          orthonormal eigenvectors of the matrix A.  
 *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')  
 *          or the upper triangle (if UPLO='U') of A, including the  
 *          diagonal, is destroyed.  
 *  
 *  LDA     (input) INTEGER  
 *          The leading dimension of the array A.  LDA >= max(1,N).  
 *  
 *  W       (output) DOUBLE PRECISION array, dimension (N)  
 *          If INFO = 0, the eigenvalues in ascending order.  
 *  
 *  WORK    (workspace/output) DOUBLE PRECISION array,  
 *                                         dimension (LWORK)  
 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.  
 *  
 *  LWORK   (input) INTEGER  
 *          The dimension of the array WORK.  
 *          If N <= 1,               LWORK must be at least 1.  
 *          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.  
 *          If JOBZ = 'V' and N > 1, LWORK must be at least  
 *                                                1 + 6*N + 2*N**2.  
 *  
 *          If LWORK = -1, then a workspace query is assumed; the routine  
 *          only calculates the optimal sizes of the WORK and IWORK  
 *          arrays, returns these values as the first entries of the WORK  
 *          and IWORK arrays, and no error message related to LWORK or  
 *          LIWORK is issued by XERBLA.  
 *  
 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))  
 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.  
 *  
 *  LIWORK  (input) INTEGER  
 *          The dimension of the array IWORK.  
 *          If N <= 1,                LIWORK must be at least 1.  
 *          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.  
 *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.  
 *  
 *          If LIWORK = -1, then a workspace query is assumed; the  
 *          routine only calculates the optimal sizes of the WORK and  
 *          IWORK arrays, returns these values as the first entries of  
 *          the WORK and IWORK arrays, and no error message related to  
 *          LWORK or LIWORK is issued by XERBLA.  
 *  
 *  INFO    (output) INTEGER  
 *          = 0:  successful exit  
 *          < 0:  if INFO = -i, the i-th argument had an illegal value  
 *          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed  
 *                to converge; i off-diagonal elements of an intermediate  
 *                tridiagonal form did not converge to zero;  
 *                if INFO = i and JOBZ = 'V', then the algorithm failed  
 *                to compute an eigenvalue while working on the submatrix  
 *                lying in rows and columns INFO/(N+1) through  
 *                mod(INFO,N+1).  
 *  
 *  Further Details  
 *  ===============  
 *  
 *  Based on contributions by  
 *     Jeff Rutter, Computer Science Division, University of California  
 *     at Berkeley, USA  
 *  Modified by Francoise Tisseur, University of Tennessee.  
 *  
 *  Modified description of INFO. Sven, 16 Feb 05.  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Parameters ..  *     .. Parameters ..
Line 177 Line 257
                LWMIN = 2*N + 1                 LWMIN = 2*N + 1
             END IF              END IF
             LOPT = MAX( LWMIN, 2*N +              LOPT = MAX( LWMIN, 2*N +
      $                  ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )       $                  N*ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
             LIOPT = LIWMIN              LIOPT = LIWMIN
          END IF           END IF
          WORK( 1 ) = LOPT           WORK( 1 ) = LOPT
Line 243 Line 323
 *  *
       CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),        CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
      $             WORK( INDWRK ), LLWORK, IINFO )       $             WORK( INDWRK ), LLWORK, IINFO )
       LOPT = 2*N + WORK( INDWRK )  
 *  *
 *     For eigenvalues only, call DSTERF.  For eigenvectors, first call  *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
 *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the  *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
Line 258 Line 337
          CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),           CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )       $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
          CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )           CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
          LOPT = MAX( LOPT, 1+6*N+2*N**2 )  
       END IF        END IF
 *  *
 *     If matrix was scaled, then rescale eigenvalues appropriately.  *     If matrix was scaled, then rescale eigenvalues appropriately.

Removed from v.1.5  
changed lines
  Added in v.1.18


CVSweb interface <joel.bertrand@systella.fr>