Annotation of rpl/lapack/lapack/dsyev_2stage.f, revision 1.2

1.1       bertrand    1: *> \brief <b> DSYEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
                      2: *
                      3: *  @precisions fortran d -> s
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download DSYEV_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, 
                     24: *                                INFO )
                     25: *
                     26: *       IMPLICIT NONE
                     27: *
                     28: *       .. Scalar Arguments ..
                     29: *       CHARACTER          JOBZ, UPLO
                     30: *       INTEGER            INFO, LDA, LWORK, N
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
                     34: *       ..
                     35: *
                     36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> DSYEV_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
                     43: *> real symmetric matrix A using the 2stage technique for
                     44: *> the reduction to tridiagonal.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] JOBZ
                     51: *> \verbatim
                     52: *>          JOBZ is CHARACTER*1
                     53: *>          = 'N':  Compute eigenvalues only;
                     54: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     55: *>                  Not available in this release.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] UPLO
                     59: *> \verbatim
                     60: *>          UPLO is CHARACTER*1
                     61: *>          = 'U':  Upper triangle of A is stored;
                     62: *>          = 'L':  Lower triangle of A is stored.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] N
                     66: *> \verbatim
                     67: *>          N is INTEGER
                     68: *>          The order of the matrix A.  N >= 0.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in,out] A
                     72: *> \verbatim
                     73: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                     74: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     75: *>          leading N-by-N upper triangular part of A contains the
                     76: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     77: *>          the leading N-by-N lower triangular part of A contains
                     78: *>          the lower triangular part of the matrix A.
                     79: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     80: *>          orthonormal eigenvectors of the matrix A.
                     81: *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     82: *>          or the upper triangle (if UPLO='U') of A, including the
                     83: *>          diagonal, is destroyed.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] LDA
                     87: *> \verbatim
                     88: *>          LDA is INTEGER
                     89: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[out] W
                     93: *> \verbatim
                     94: *>          W is DOUBLE PRECISION array, dimension (N)
                     95: *>          If INFO = 0, the eigenvalues in ascending order.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[out] WORK
                     99: *> \verbatim
                    100: *>          WORK is DOUBLE PRECISION array, dimension LWORK
                    101: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] LWORK
                    105: *> \verbatim
                    106: *>          LWORK is INTEGER
                    107: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    108: *>          otherwise  
                    109: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    110: *>                                   LWORK = MAX(1, dimension) where
                    111: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + 2*N
                    112: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
                    113: *>                                               + max(2*KD*KD, KD*NTHREADS) 
                    114: *>                                               + (KD+1)*N + 2*N
                    115: *>                                   where KD is the blocking size of the reduction,
                    116: *>                                   FACTOPTNB is the blocking used by the QR or LQ
                    117: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
                    118: *>                                   NTHREADS is the number of threads used when
                    119: *>                                   openMP compilation is enabled, otherwise =1.
                    120: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
                    121: *>
                    122: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    123: *>          only calculates the optimal size of the WORK array, returns
                    124: *>          this value as the first entry of the WORK array, and no error
                    125: *>          message related to LWORK is issued by XERBLA.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] INFO
                    129: *> \verbatim
                    130: *>          INFO is INTEGER
                    131: *>          = 0:  successful exit
                    132: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    133: *>          > 0:  if INFO = i, the algorithm failed to converge; i
                    134: *>                off-diagonal elements of an intermediate tridiagonal
                    135: *>                form did not converge to zero.
                    136: *> \endverbatim
                    137: *
                    138: *  Authors:
                    139: *  ========
                    140: *
                    141: *> \author Univ. of Tennessee
                    142: *> \author Univ. of California Berkeley
                    143: *> \author Univ. of Colorado Denver
                    144: *> \author NAG Ltd.
                    145: *
                    146: *> \date December 2016
                    147: *
                    148: *> \ingroup doubleSYeigen
                    149: *
                    150: *> \par Further Details:
                    151: *  =====================
                    152: *>
                    153: *> \verbatim
                    154: *>
                    155: *>  All details about the 2stage techniques are available in:
                    156: *>
                    157: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    158: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    159: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    160: *>  of 2011 International Conference for High Performance Computing,
                    161: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    162: *>  Article 8 , 11 pages.
                    163: *>  http://doi.acm.org/10.1145/2063384.2063394
                    164: *>
                    165: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    166: *>  An improved parallel singular value algorithm and its implementation 
                    167: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    168: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    169: *>  Denver, Colorado, USA, 2013.
                    170: *>  Article 90, 12 pages.
                    171: *>  http://doi.acm.org/10.1145/2503210.2503292
                    172: *>
                    173: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    174: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    175: *>  calculations based on fine-grained memory aware tasks.
                    176: *>  International Journal of High Performance Computing Applications.
                    177: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    178: *>  http://hpc.sagepub.com/content/28/2/196 
                    179: *>
                    180: *> \endverbatim
                    181: *
                    182: *  =====================================================================
                    183:       SUBROUTINE DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, 
                    184:      $                         INFO )
                    185: *
                    186:       IMPLICIT NONE
                    187: *
                    188: *  -- LAPACK driver routine (version 3.7.0) --
                    189: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    191: *     December 2016
                    192: *
                    193: *     .. Scalar Arguments ..
                    194:       CHARACTER          JOBZ, UPLO
                    195:       INTEGER            INFO, LDA, LWORK, N
                    196: *     ..
                    197: *     .. Array Arguments ..
                    198:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
                    199: *     ..
                    200: *
                    201: *  =====================================================================
                    202: *
                    203: *     .. Parameters ..
                    204:       DOUBLE PRECISION   ZERO, ONE
                    205:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    206: *     ..
                    207: *     .. Local Scalars ..
                    208:       LOGICAL            LOWER, LQUERY, WANTZ
                    209:       INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
                    210:      $                   LLWORK, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
                    211:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    212:      $                   SMLNUM
                    213: *     ..
                    214: *     .. External Functions ..
                    215:       LOGICAL            LSAME
                    216:       INTEGER            ILAENV
                    217:       DOUBLE PRECISION   DLAMCH, DLANSY
                    218:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
                    219: *     ..
                    220: *     .. External Subroutines ..
                    221:       EXTERNAL           DLASCL, DORGTR, DSCAL, DSTEQR, DSTERF,
                    222:      $                   XERBLA, DSYTRD_2STAGE
                    223: *     ..
                    224: *     .. Intrinsic Functions ..
                    225:       INTRINSIC          MAX, SQRT
                    226: *     ..
                    227: *     .. Executable Statements ..
                    228: *
                    229: *     Test the input parameters.
                    230: *
                    231:       WANTZ = LSAME( JOBZ, 'V' )
                    232:       LOWER = LSAME( UPLO, 'L' )
                    233:       LQUERY = ( LWORK.EQ.-1 )
                    234: *
                    235:       INFO = 0
                    236:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    237:          INFO = -1
                    238:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    239:          INFO = -2
                    240:       ELSE IF( N.LT.0 ) THEN
                    241:          INFO = -3
                    242:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    243:          INFO = -5
                    244:       END IF
                    245: *
                    246:       IF( INFO.EQ.0 ) THEN
                    247:          KD    = ILAENV( 17, 'DSYTRD_2STAGE', JOBZ, N, -1, -1, -1 )
                    248:          IB    = ILAENV( 18, 'DSYTRD_2STAGE', JOBZ, N, KD, -1, -1 )
                    249:          LHTRD = ILAENV( 19, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
                    250:          LWTRD = ILAENV( 20, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
                    251:          LWMIN = 2*N + LHTRD + LWTRD
                    252:          WORK( 1 )  = LWMIN
                    253: *
                    254:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
                    255:      $      INFO = -8
                    256:       END IF
                    257: *
                    258:       IF( INFO.NE.0 ) THEN
                    259:          CALL XERBLA( 'DSYEV_2STAGE ', -INFO )
                    260:          RETURN
                    261:       ELSE IF( LQUERY ) THEN
                    262:          RETURN
                    263:       END IF
                    264: *
                    265: *     Quick return if possible
                    266: *
                    267:       IF( N.EQ.0 ) THEN
                    268:          RETURN
                    269:       END IF
                    270: *
                    271:       IF( N.EQ.1 ) THEN
                    272:          W( 1 ) = A( 1, 1 )
                    273:          WORK( 1 ) = 2
                    274:          IF( WANTZ )
                    275:      $      A( 1, 1 ) = ONE
                    276:          RETURN
                    277:       END IF
                    278: *
                    279: *     Get machine constants.
                    280: *
                    281:       SAFMIN = DLAMCH( 'Safe minimum' )
                    282:       EPS    = DLAMCH( 'Precision' )
                    283:       SMLNUM = SAFMIN / EPS
                    284:       BIGNUM = ONE / SMLNUM
                    285:       RMIN   = SQRT( SMLNUM )
                    286:       RMAX   = SQRT( BIGNUM )
                    287: *
                    288: *     Scale matrix to allowable range, if necessary.
                    289: *
                    290:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
                    291:       ISCALE = 0
                    292:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    293:          ISCALE = 1
                    294:          SIGMA = RMIN / ANRM
                    295:       ELSE IF( ANRM.GT.RMAX ) THEN
                    296:          ISCALE = 1
                    297:          SIGMA = RMAX / ANRM
                    298:       END IF
                    299:       IF( ISCALE.EQ.1 )
                    300:      $   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
                    301: *
                    302: *     Call DSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
                    303: *
                    304:       INDE    = 1
                    305:       INDTAU  = INDE + N
                    306:       INDHOUS = INDTAU + N
                    307:       INDWRK  = INDHOUS + LHTRD
                    308:       LLWORK  = LWORK - INDWRK + 1
                    309: *
                    310:       CALL DSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK( INDE ),
                    311:      $                    WORK( INDTAU ), WORK( INDHOUS ), LHTRD, 
                    312:      $                    WORK( INDWRK ), LLWORK, IINFO )
                    313: *
                    314: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    315: *     DORGTR to generate the orthogonal matrix, then call DSTEQR.
                    316: *
                    317:       IF( .NOT.WANTZ ) THEN
                    318:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    319:       ELSE
                    320: *        Not available in this release, and agrument checking should not
                    321: *        let it getting here
                    322:          RETURN
                    323:          CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
                    324:      $                LLWORK, IINFO )
                    325:          CALL DSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
                    326:      $                INFO )
                    327:       END IF
                    328: *
                    329: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    330: *
                    331:       IF( ISCALE.EQ.1 ) THEN
                    332:          IF( INFO.EQ.0 ) THEN
                    333:             IMAX = N
                    334:          ELSE
                    335:             IMAX = INFO - 1
                    336:          END IF
                    337:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    338:       END IF
                    339: *
                    340: *     Set WORK(1) to optimal workspace size.
                    341: *
                    342:       WORK( 1 ) = LWMIN
                    343: *
                    344:       RETURN
                    345: *
                    346: *     End of DSYEV_2STAGE
                    347: *
                    348:       END

CVSweb interface <joel.bertrand@systella.fr>