Annotation of rpl/lapack/lapack/dsyev.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
                      2: *
                      3: *  -- LAPACK driver routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          JOBZ, UPLO
                     10:       INTEGER            INFO, LDA, LWORK, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  DSYEV computes all eigenvalues and, optionally, eigenvectors of a
                     20: *  real symmetric matrix A.
                     21: *
                     22: *  Arguments
                     23: *  =========
                     24: *
                     25: *  JOBZ    (input) CHARACTER*1
                     26: *          = 'N':  Compute eigenvalues only;
                     27: *          = 'V':  Compute eigenvalues and eigenvectors.
                     28: *
                     29: *  UPLO    (input) CHARACTER*1
                     30: *          = 'U':  Upper triangle of A is stored;
                     31: *          = 'L':  Lower triangle of A is stored.
                     32: *
                     33: *  N       (input) INTEGER
                     34: *          The order of the matrix A.  N >= 0.
                     35: *
                     36: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     37: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
                     38: *          leading N-by-N upper triangular part of A contains the
                     39: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     40: *          the leading N-by-N lower triangular part of A contains
                     41: *          the lower triangular part of the matrix A.
                     42: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     43: *          orthonormal eigenvectors of the matrix A.
                     44: *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     45: *          or the upper triangle (if UPLO='U') of A, including the
                     46: *          diagonal, is destroyed.
                     47: *
                     48: *  LDA     (input) INTEGER
                     49: *          The leading dimension of the array A.  LDA >= max(1,N).
                     50: *
                     51: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     52: *          If INFO = 0, the eigenvalues in ascending order.
                     53: *
                     54: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     55: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     56: *
                     57: *  LWORK   (input) INTEGER
                     58: *          The length of the array WORK.  LWORK >= max(1,3*N-1).
                     59: *          For optimal efficiency, LWORK >= (NB+2)*N,
                     60: *          where NB is the blocksize for DSYTRD returned by ILAENV.
                     61: *
                     62: *          If LWORK = -1, then a workspace query is assumed; the routine
                     63: *          only calculates the optimal size of the WORK array, returns
                     64: *          this value as the first entry of the WORK array, and no error
                     65: *          message related to LWORK is issued by XERBLA.
                     66: *
                     67: *  INFO    (output) INTEGER
                     68: *          = 0:  successful exit
                     69: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     70: *          > 0:  if INFO = i, the algorithm failed to converge; i
                     71: *                off-diagonal elements of an intermediate tridiagonal
                     72: *                form did not converge to zero.
                     73: *
                     74: *  =====================================================================
                     75: *
                     76: *     .. Parameters ..
                     77:       DOUBLE PRECISION   ZERO, ONE
                     78:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                     79: *     ..
                     80: *     .. Local Scalars ..
                     81:       LOGICAL            LOWER, LQUERY, WANTZ
                     82:       INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
                     83:      $                   LLWORK, LWKOPT, NB
                     84:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                     85:      $                   SMLNUM
                     86: *     ..
                     87: *     .. External Functions ..
                     88:       LOGICAL            LSAME
                     89:       INTEGER            ILAENV
                     90:       DOUBLE PRECISION   DLAMCH, DLANSY
                     91:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
                     92: *     ..
                     93: *     .. External Subroutines ..
                     94:       EXTERNAL           DLASCL, DORGTR, DSCAL, DSTEQR, DSTERF, DSYTRD,
                     95:      $                   XERBLA
                     96: *     ..
                     97: *     .. Intrinsic Functions ..
                     98:       INTRINSIC          MAX, SQRT
                     99: *     ..
                    100: *     .. Executable Statements ..
                    101: *
                    102: *     Test the input parameters.
                    103: *
                    104:       WANTZ = LSAME( JOBZ, 'V' )
                    105:       LOWER = LSAME( UPLO, 'L' )
                    106:       LQUERY = ( LWORK.EQ.-1 )
                    107: *
                    108:       INFO = 0
                    109:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    110:          INFO = -1
                    111:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    112:          INFO = -2
                    113:       ELSE IF( N.LT.0 ) THEN
                    114:          INFO = -3
                    115:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    116:          INFO = -5
                    117:       END IF
                    118: *
                    119:       IF( INFO.EQ.0 ) THEN
                    120:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
                    121:          LWKOPT = MAX( 1, ( NB+2 )*N )
                    122:          WORK( 1 ) = LWKOPT
                    123: *
                    124:          IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY )
                    125:      $      INFO = -8
                    126:       END IF
                    127: *
                    128:       IF( INFO.NE.0 ) THEN
                    129:          CALL XERBLA( 'DSYEV ', -INFO )
                    130:          RETURN
                    131:       ELSE IF( LQUERY ) THEN
                    132:          RETURN
                    133:       END IF
                    134: *
                    135: *     Quick return if possible
                    136: *
                    137:       IF( N.EQ.0 ) THEN
                    138:          RETURN
                    139:       END IF
                    140: *
                    141:       IF( N.EQ.1 ) THEN
                    142:          W( 1 ) = A( 1, 1 )
                    143:          WORK( 1 ) = 2
                    144:          IF( WANTZ )
                    145:      $      A( 1, 1 ) = ONE
                    146:          RETURN
                    147:       END IF
                    148: *
                    149: *     Get machine constants.
                    150: *
                    151:       SAFMIN = DLAMCH( 'Safe minimum' )
                    152:       EPS = DLAMCH( 'Precision' )
                    153:       SMLNUM = SAFMIN / EPS
                    154:       BIGNUM = ONE / SMLNUM
                    155:       RMIN = SQRT( SMLNUM )
                    156:       RMAX = SQRT( BIGNUM )
                    157: *
                    158: *     Scale matrix to allowable range, if necessary.
                    159: *
                    160:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
                    161:       ISCALE = 0
                    162:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    163:          ISCALE = 1
                    164:          SIGMA = RMIN / ANRM
                    165:       ELSE IF( ANRM.GT.RMAX ) THEN
                    166:          ISCALE = 1
                    167:          SIGMA = RMAX / ANRM
                    168:       END IF
                    169:       IF( ISCALE.EQ.1 )
                    170:      $   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
                    171: *
                    172: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
                    173: *
                    174:       INDE = 1
                    175:       INDTAU = INDE + N
                    176:       INDWRK = INDTAU + N
                    177:       LLWORK = LWORK - INDWRK + 1
                    178:       CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
                    179:      $             WORK( INDWRK ), LLWORK, IINFO )
                    180: *
                    181: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    182: *     DORGTR to generate the orthogonal matrix, then call DSTEQR.
                    183: *
                    184:       IF( .NOT.WANTZ ) THEN
                    185:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    186:       ELSE
                    187:          CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
                    188:      $                LLWORK, IINFO )
                    189:          CALL DSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
                    190:      $                INFO )
                    191:       END IF
                    192: *
                    193: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    194: *
                    195:       IF( ISCALE.EQ.1 ) THEN
                    196:          IF( INFO.EQ.0 ) THEN
                    197:             IMAX = N
                    198:          ELSE
                    199:             IMAX = INFO - 1
                    200:          END IF
                    201:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    202:       END IF
                    203: *
                    204: *     Set WORK(1) to optimal workspace size.
                    205: *
                    206:       WORK( 1 ) = LWKOPT
                    207: *
                    208:       RETURN
                    209: *
                    210: *     End of DSYEV
                    211: *
                    212:       END

CVSweb interface <joel.bertrand@systella.fr>