File:  [local] / rpl / lapack / lapack / dsyequb.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:04 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b DSYEQUB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYEQUB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyequb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyequb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyequb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, N
   25: *       DOUBLE PRECISION   AMAX, SCOND
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), S( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYEQUB computes row and column scalings intended to equilibrate a
   39: *> symmetric matrix A (with respect to the Euclidean norm) and reduce
   40: *> its condition number. The scale factors S are computed by the BIN
   41: *> algorithm (see references) so that the scaled matrix B with elements
   42: *> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
   43: *> the smallest possible condition number over all possible diagonal
   44: *> scalings.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] UPLO
   51: *> \verbatim
   52: *>          UPLO is CHARACTER*1
   53: *>          = 'U':  Upper triangle of A is stored;
   54: *>          = 'L':  Lower triangle of A is stored.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] N
   58: *> \verbatim
   59: *>          N is INTEGER
   60: *>          The order of the matrix A. N >= 0.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] A
   64: *> \verbatim
   65: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   66: *>          The N-by-N symmetric matrix whose scaling factors are to be
   67: *>          computed.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] LDA
   71: *> \verbatim
   72: *>          LDA is INTEGER
   73: *>          The leading dimension of the array A. LDA >= max(1,N).
   74: *> \endverbatim
   75: *>
   76: *> \param[out] S
   77: *> \verbatim
   78: *>          S is DOUBLE PRECISION array, dimension (N)
   79: *>          If INFO = 0, S contains the scale factors for A.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] SCOND
   83: *> \verbatim
   84: *>          SCOND is DOUBLE PRECISION
   85: *>          If INFO = 0, S contains the ratio of the smallest S(i) to
   86: *>          the largest S(i). If SCOND >= 0.1 and AMAX is neither too
   87: *>          large nor too small, it is not worth scaling by S.
   88: *> \endverbatim
   89: *>
   90: *> \param[out] AMAX
   91: *> \verbatim
   92: *>          AMAX is DOUBLE PRECISION
   93: *>          Largest absolute value of any matrix element. If AMAX is
   94: *>          very close to overflow or very close to underflow, the
   95: *>          matrix should be scaled.
   96: *> \endverbatim
   97: *>
   98: *> \param[out] WORK
   99: *> \verbatim
  100: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  101: *> \endverbatim
  102: *>
  103: *> \param[out] INFO
  104: *> \verbatim
  105: *>          INFO is INTEGER
  106: *>          = 0:  successful exit
  107: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  108: *>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
  109: *> \endverbatim
  110: *
  111: *  Authors:
  112: *  ========
  113: *
  114: *> \author Univ. of Tennessee
  115: *> \author Univ. of California Berkeley
  116: *> \author Univ. of Colorado Denver
  117: *> \author NAG Ltd.
  118: *
  119: *> \date December 2016
  120: *
  121: *> \ingroup doubleSYcomputational
  122: *
  123: *> \par References:
  124: *  ================
  125: *>
  126: *>  Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
  127: *>  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
  128: *>  DOI 10.1023/B:NUMA.0000016606.32820.69 \n
  129: *>  Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
  130: *>
  131: *  =====================================================================
  132:       SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  133: *
  134: *  -- LAPACK computational routine (version 3.7.0) --
  135: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  136: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  137: *     December 2016
  138: *
  139: *     .. Scalar Arguments ..
  140:       INTEGER            INFO, LDA, N
  141:       DOUBLE PRECISION   AMAX, SCOND
  142:       CHARACTER          UPLO
  143: *     ..
  144: *     .. Array Arguments ..
  145:       DOUBLE PRECISION   A( LDA, * ), S( * ), WORK( * )
  146: *     ..
  147: *
  148: *  =====================================================================
  149: *
  150: *     .. Parameters ..
  151:       DOUBLE PRECISION   ONE, ZERO
  152:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  153:       INTEGER            MAX_ITER
  154:       PARAMETER          ( MAX_ITER = 100 )
  155: *     ..
  156: *     .. Local Scalars ..
  157:       INTEGER            I, J, ITER
  158:       DOUBLE PRECISION   AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
  159:      $                   SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
  160:       LOGICAL            UP
  161: *     ..
  162: *     .. External Functions ..
  163:       DOUBLE PRECISION   DLAMCH
  164:       LOGICAL            LSAME
  165:       EXTERNAL           DLAMCH, LSAME
  166: *     ..
  167: *     .. External Subroutines ..
  168:       EXTERNAL           DLASSQ
  169: *     ..
  170: *     .. Intrinsic Functions ..
  171:       INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
  172: *     ..
  173: *     .. Executable Statements ..
  174: *
  175: *     Test the input parameters.
  176: *
  177:       INFO = 0
  178:       IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
  179:          INFO = -1
  180:       ELSE IF ( N .LT. 0 ) THEN
  181:          INFO = -2
  182:       ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
  183:          INFO = -4
  184:       END IF
  185:       IF ( INFO .NE. 0 ) THEN
  186:          CALL XERBLA( 'DSYEQUB', -INFO )
  187:          RETURN
  188:       END IF
  189: 
  190:       UP = LSAME( UPLO, 'U' )
  191:       AMAX = ZERO
  192: *
  193: *     Quick return if possible.
  194: *
  195:       IF ( N .EQ. 0 ) THEN
  196:          SCOND = ONE
  197:          RETURN
  198:       END IF
  199: 
  200:       DO I = 1, N
  201:          S( I ) = ZERO
  202:       END DO
  203: 
  204:       AMAX = ZERO
  205:       IF ( UP ) THEN
  206:          DO J = 1, N
  207:             DO I = 1, J-1
  208:                S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
  209:                S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
  210:                AMAX = MAX( AMAX, ABS( A( I, J ) ) )
  211:             END DO
  212:             S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
  213:             AMAX = MAX( AMAX, ABS( A( J, J ) ) )
  214:          END DO
  215:       ELSE
  216:          DO J = 1, N
  217:             S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
  218:             AMAX = MAX( AMAX, ABS( A( J, J ) ) )
  219:             DO I = J+1, N
  220:                S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
  221:                S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
  222:                AMAX = MAX( AMAX, ABS( A( I, J ) ) )
  223:             END DO
  224:          END DO
  225:       END IF
  226:       DO J = 1, N
  227:          S( J ) = 1.0D0 / S( J )
  228:       END DO
  229: 
  230:       TOL = ONE / SQRT( 2.0D0 * N )
  231: 
  232:       DO ITER = 1, MAX_ITER
  233:          SCALE = 0.0D0
  234:          SUMSQ = 0.0D0
  235: *        beta = |A|s
  236:          DO I = 1, N
  237:             WORK( I ) = ZERO
  238:          END DO
  239:          IF ( UP ) THEN
  240:             DO J = 1, N
  241:                DO I = 1, J-1
  242:                   WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
  243:                   WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
  244:                END DO
  245:                WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
  246:             END DO
  247:          ELSE
  248:             DO J = 1, N
  249:                WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
  250:                DO I = J+1, N
  251:                   WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
  252:                   WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
  253:                END DO
  254:             END DO
  255:          END IF
  256: 
  257: *        avg = s^T beta / n
  258:          AVG = 0.0D0
  259:          DO I = 1, N
  260:             AVG = AVG + S( I )*WORK( I )
  261:          END DO
  262:          AVG = AVG / N
  263: 
  264:          STD = 0.0D0
  265:          DO I = N+1, 2*N
  266:             WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
  267:          END DO
  268:          CALL DLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
  269:          STD = SCALE * SQRT( SUMSQ / N )
  270: 
  271:          IF ( STD .LT. TOL * AVG ) GOTO 999
  272: 
  273:          DO I = 1, N
  274:             T = ABS( A( I, I ) )
  275:             SI = S( I )
  276:             C2 = ( N-1 ) * T
  277:             C1 = ( N-2 ) * ( WORK( I ) - T*SI )
  278:             C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
  279:             D = C1*C1 - 4*C0*C2
  280: 
  281:             IF ( D .LE. 0 ) THEN
  282:                INFO = -1
  283:                RETURN
  284:             END IF
  285:             SI = -2*C0 / ( C1 + SQRT( D ) )
  286: 
  287:             D = SI - S( I )
  288:             U = ZERO
  289:             IF ( UP ) THEN
  290:                DO J = 1, I
  291:                   T = ABS( A( J, I ) )
  292:                   U = U + S( J )*T
  293:                   WORK( J ) = WORK( J ) + D*T
  294:                END DO
  295:                DO J = I+1,N
  296:                   T = ABS( A( I, J ) )
  297:                   U = U + S( J )*T
  298:                   WORK( J ) = WORK( J ) + D*T
  299:                END DO
  300:             ELSE
  301:                DO J = 1, I
  302:                   T = ABS( A( I, J ) )
  303:                   U = U + S( J )*T
  304:                   WORK( J ) = WORK( J ) + D*T
  305:                END DO
  306:                DO J = I+1,N
  307:                   T = ABS( A( J, I ) )
  308:                   U = U + S( J )*T
  309:                   WORK( J ) = WORK( J ) + D*T
  310:                END DO
  311:             END IF
  312: 
  313:             AVG = AVG + ( U + WORK( I ) ) * D / N
  314:             S( I ) = SI
  315:          END DO
  316:       END DO
  317: 
  318:  999  CONTINUE
  319: 
  320:       SMLNUM = DLAMCH( 'SAFEMIN' )
  321:       BIGNUM = ONE / SMLNUM
  322:       SMIN = BIGNUM
  323:       SMAX = ZERO
  324:       T = ONE / SQRT( AVG )
  325:       BASE = DLAMCH( 'B' )
  326:       U = ONE / LOG( BASE )
  327:       DO I = 1, N
  328:          S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
  329:          SMIN = MIN( SMIN, S( I ) )
  330:          SMAX = MAX( SMAX, S( I ) )
  331:       END DO
  332:       SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  333: *
  334:       END

CVSweb interface <joel.bertrand@systella.fr>