File:  [local] / rpl / lapack / lapack / dstevx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:07 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSTEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
   22: *                          M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBZ, RANGE
   26: *       INTEGER            IL, INFO, IU, LDZ, M, N
   27: *       DOUBLE PRECISION   ABSTOL, VL, VU
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IFAIL( * ), IWORK( * )
   31: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DSTEVX computes selected eigenvalues and, optionally, eigenvectors
   41: *> of a real symmetric tridiagonal matrix A.  Eigenvalues and
   42: *> eigenvectors can be selected by specifying either a range of values
   43: *> or a range of indices for the desired eigenvalues.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] JOBZ
   50: *> \verbatim
   51: *>          JOBZ is CHARACTER*1
   52: *>          = 'N':  Compute eigenvalues only;
   53: *>          = 'V':  Compute eigenvalues and eigenvectors.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] RANGE
   57: *> \verbatim
   58: *>          RANGE is CHARACTER*1
   59: *>          = 'A': all eigenvalues will be found.
   60: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   61: *>                 will be found.
   62: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The order of the matrix.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] D
   72: *> \verbatim
   73: *>          D is DOUBLE PRECISION array, dimension (N)
   74: *>          On entry, the n diagonal elements of the tridiagonal matrix
   75: *>          A.
   76: *>          On exit, D may be multiplied by a constant factor chosen
   77: *>          to avoid over/underflow in computing the eigenvalues.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] E
   81: *> \verbatim
   82: *>          E is DOUBLE PRECISION array, dimension (max(1,N-1))
   83: *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
   84: *>          matrix A in elements 1 to N-1 of E.
   85: *>          On exit, E may be multiplied by a constant factor chosen
   86: *>          to avoid over/underflow in computing the eigenvalues.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] VL
   90: *> \verbatim
   91: *>          VL is DOUBLE PRECISION
   92: *>          If RANGE='V', the lower bound of the interval to
   93: *>          be searched for eigenvalues. VL < VU.
   94: *>          Not referenced if RANGE = 'A' or 'I'.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] VU
   98: *> \verbatim
   99: *>          VU is DOUBLE PRECISION
  100: *>          If RANGE='V', the upper bound of the interval to
  101: *>          be searched for eigenvalues. VL < VU.
  102: *>          Not referenced if RANGE = 'A' or 'I'.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] IL
  106: *> \verbatim
  107: *>          IL is INTEGER
  108: *>          If RANGE='I', the index of the
  109: *>          smallest eigenvalue to be returned.
  110: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  111: *>          Not referenced if RANGE = 'A' or 'V'.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] IU
  115: *> \verbatim
  116: *>          IU is INTEGER
  117: *>          If RANGE='I', the index of the
  118: *>          largest eigenvalue to be returned.
  119: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  120: *>          Not referenced if RANGE = 'A' or 'V'.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] ABSTOL
  124: *> \verbatim
  125: *>          ABSTOL is DOUBLE PRECISION
  126: *>          The absolute error tolerance for the eigenvalues.
  127: *>          An approximate eigenvalue is accepted as converged
  128: *>          when it is determined to lie in an interval [a,b]
  129: *>          of width less than or equal to
  130: *>
  131: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  132: *>
  133: *>          where EPS is the machine precision.  If ABSTOL is less
  134: *>          than or equal to zero, then  EPS*|T|  will be used in
  135: *>          its place, where |T| is the 1-norm of the tridiagonal
  136: *>          matrix.
  137: *>
  138: *>          Eigenvalues will be computed most accurately when ABSTOL is
  139: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  140: *>          If this routine returns with INFO>0, indicating that some
  141: *>          eigenvectors did not converge, try setting ABSTOL to
  142: *>          2*DLAMCH('S').
  143: *>
  144: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  145: *>          with Guaranteed High Relative Accuracy," by Demmel and
  146: *>          Kahan, LAPACK Working Note #3.
  147: *> \endverbatim
  148: *>
  149: *> \param[out] M
  150: *> \verbatim
  151: *>          M is INTEGER
  152: *>          The total number of eigenvalues found.  0 <= M <= N.
  153: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  154: *> \endverbatim
  155: *>
  156: *> \param[out] W
  157: *> \verbatim
  158: *>          W is DOUBLE PRECISION array, dimension (N)
  159: *>          The first M elements contain the selected eigenvalues in
  160: *>          ascending order.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] Z
  164: *> \verbatim
  165: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  166: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  167: *>          contain the orthonormal eigenvectors of the matrix A
  168: *>          corresponding to the selected eigenvalues, with the i-th
  169: *>          column of Z holding the eigenvector associated with W(i).
  170: *>          If an eigenvector fails to converge (INFO > 0), then that
  171: *>          column of Z contains the latest approximation to the
  172: *>          eigenvector, and the index of the eigenvector is returned
  173: *>          in IFAIL.  If JOBZ = 'N', then Z is not referenced.
  174: *>          Note: the user must ensure that at least max(1,M) columns are
  175: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  176: *>          is not known in advance and an upper bound must be used.
  177: *> \endverbatim
  178: *>
  179: *> \param[in] LDZ
  180: *> \verbatim
  181: *>          LDZ is INTEGER
  182: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  183: *>          JOBZ = 'V', LDZ >= max(1,N).
  184: *> \endverbatim
  185: *>
  186: *> \param[out] WORK
  187: *> \verbatim
  188: *>          WORK is DOUBLE PRECISION array, dimension (5*N)
  189: *> \endverbatim
  190: *>
  191: *> \param[out] IWORK
  192: *> \verbatim
  193: *>          IWORK is INTEGER array, dimension (5*N)
  194: *> \endverbatim
  195: *>
  196: *> \param[out] IFAIL
  197: *> \verbatim
  198: *>          IFAIL is INTEGER array, dimension (N)
  199: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  200: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  201: *>          indices of the eigenvectors that failed to converge.
  202: *>          If JOBZ = 'N', then IFAIL is not referenced.
  203: *> \endverbatim
  204: *>
  205: *> \param[out] INFO
  206: *> \verbatim
  207: *>          INFO is INTEGER
  208: *>          = 0:  successful exit
  209: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  210: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  211: *>                Their indices are stored in array IFAIL.
  212: *> \endverbatim
  213: *
  214: *  Authors:
  215: *  ========
  216: *
  217: *> \author Univ. of Tennessee
  218: *> \author Univ. of California Berkeley
  219: *> \author Univ. of Colorado Denver
  220: *> \author NAG Ltd.
  221: *
  222: *> \ingroup doubleOTHEReigen
  223: *
  224: *  =====================================================================
  225:       SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
  226:      $                   M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
  227: *
  228: *  -- LAPACK driver routine --
  229: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  230: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  231: *
  232: *     .. Scalar Arguments ..
  233:       CHARACTER          JOBZ, RANGE
  234:       INTEGER            IL, INFO, IU, LDZ, M, N
  235:       DOUBLE PRECISION   ABSTOL, VL, VU
  236: *     ..
  237: *     .. Array Arguments ..
  238:       INTEGER            IFAIL( * ), IWORK( * )
  239:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
  240: *     ..
  241: *
  242: *  =====================================================================
  243: *
  244: *     .. Parameters ..
  245:       DOUBLE PRECISION   ZERO, ONE
  246:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  247: *     ..
  248: *     .. Local Scalars ..
  249:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  250:       CHARACTER          ORDER
  251:       INTEGER            I, IMAX, INDIBL, INDISP, INDIWO, INDWRK,
  252:      $                   ISCALE, ITMP1, J, JJ, NSPLIT
  253:       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
  254:      $                   TMP1, TNRM, VLL, VUU
  255: *     ..
  256: *     .. External Functions ..
  257:       LOGICAL            LSAME
  258:       DOUBLE PRECISION   DLAMCH, DLANST
  259:       EXTERNAL           LSAME, DLAMCH, DLANST
  260: *     ..
  261: *     .. External Subroutines ..
  262:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEIN, DSTEQR, DSTERF,
  263:      $                   DSWAP, XERBLA
  264: *     ..
  265: *     .. Intrinsic Functions ..
  266:       INTRINSIC          MAX, MIN, SQRT
  267: *     ..
  268: *     .. Executable Statements ..
  269: *
  270: *     Test the input parameters.
  271: *
  272:       WANTZ = LSAME( JOBZ, 'V' )
  273:       ALLEIG = LSAME( RANGE, 'A' )
  274:       VALEIG = LSAME( RANGE, 'V' )
  275:       INDEIG = LSAME( RANGE, 'I' )
  276: *
  277:       INFO = 0
  278:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  279:          INFO = -1
  280:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  281:          INFO = -2
  282:       ELSE IF( N.LT.0 ) THEN
  283:          INFO = -3
  284:       ELSE
  285:          IF( VALEIG ) THEN
  286:             IF( N.GT.0 .AND. VU.LE.VL )
  287:      $         INFO = -7
  288:          ELSE IF( INDEIG ) THEN
  289:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  290:                INFO = -8
  291:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  292:                INFO = -9
  293:             END IF
  294:          END IF
  295:       END IF
  296:       IF( INFO.EQ.0 ) THEN
  297:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  298:      $      INFO = -14
  299:       END IF
  300: *
  301:       IF( INFO.NE.0 ) THEN
  302:          CALL XERBLA( 'DSTEVX', -INFO )
  303:          RETURN
  304:       END IF
  305: *
  306: *     Quick return if possible
  307: *
  308:       M = 0
  309:       IF( N.EQ.0 )
  310:      $   RETURN
  311: *
  312:       IF( N.EQ.1 ) THEN
  313:          IF( ALLEIG .OR. INDEIG ) THEN
  314:             M = 1
  315:             W( 1 ) = D( 1 )
  316:          ELSE
  317:             IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
  318:                M = 1
  319:                W( 1 ) = D( 1 )
  320:             END IF
  321:          END IF
  322:          IF( WANTZ )
  323:      $      Z( 1, 1 ) = ONE
  324:          RETURN
  325:       END IF
  326: *
  327: *     Get machine constants.
  328: *
  329:       SAFMIN = DLAMCH( 'Safe minimum' )
  330:       EPS = DLAMCH( 'Precision' )
  331:       SMLNUM = SAFMIN / EPS
  332:       BIGNUM = ONE / SMLNUM
  333:       RMIN = SQRT( SMLNUM )
  334:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  335: *
  336: *     Scale matrix to allowable range, if necessary.
  337: *
  338:       ISCALE = 0
  339:       IF( VALEIG ) THEN
  340:          VLL = VL
  341:          VUU = VU
  342:       ELSE
  343:          VLL = ZERO
  344:          VUU = ZERO
  345:       END IF
  346:       TNRM = DLANST( 'M', N, D, E )
  347:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  348:          ISCALE = 1
  349:          SIGMA = RMIN / TNRM
  350:       ELSE IF( TNRM.GT.RMAX ) THEN
  351:          ISCALE = 1
  352:          SIGMA = RMAX / TNRM
  353:       END IF
  354:       IF( ISCALE.EQ.1 ) THEN
  355:          CALL DSCAL( N, SIGMA, D, 1 )
  356:          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
  357:          IF( VALEIG ) THEN
  358:             VLL = VL*SIGMA
  359:             VUU = VU*SIGMA
  360:          END IF
  361:       END IF
  362: *
  363: *     If all eigenvalues are desired and ABSTOL is less than zero, then
  364: *     call DSTERF or SSTEQR.  If this fails for some eigenvalue, then
  365: *     try DSTEBZ.
  366: *
  367:       TEST = .FALSE.
  368:       IF( INDEIG ) THEN
  369:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  370:             TEST = .TRUE.
  371:          END IF
  372:       END IF
  373:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  374:          CALL DCOPY( N, D, 1, W, 1 )
  375:          CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
  376:          INDWRK = N + 1
  377:          IF( .NOT.WANTZ ) THEN
  378:             CALL DSTERF( N, W, WORK, INFO )
  379:          ELSE
  380:             CALL DSTEQR( 'I', N, W, WORK, Z, LDZ, WORK( INDWRK ), INFO )
  381:             IF( INFO.EQ.0 ) THEN
  382:                DO 10 I = 1, N
  383:                   IFAIL( I ) = 0
  384:    10          CONTINUE
  385:             END IF
  386:          END IF
  387:          IF( INFO.EQ.0 ) THEN
  388:             M = N
  389:             GO TO 20
  390:          END IF
  391:          INFO = 0
  392:       END IF
  393: *
  394: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  395: *
  396:       IF( WANTZ ) THEN
  397:          ORDER = 'B'
  398:       ELSE
  399:          ORDER = 'E'
  400:       END IF
  401:       INDWRK = 1
  402:       INDIBL = 1
  403:       INDISP = INDIBL + N
  404:       INDIWO = INDISP + N
  405:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
  406:      $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ),
  407:      $             WORK( INDWRK ), IWORK( INDIWO ), INFO )
  408: *
  409:       IF( WANTZ ) THEN
  410:          CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
  411:      $                Z, LDZ, WORK( INDWRK ), IWORK( INDIWO ), IFAIL,
  412:      $                INFO )
  413:       END IF
  414: *
  415: *     If matrix was scaled, then rescale eigenvalues appropriately.
  416: *
  417:    20 CONTINUE
  418:       IF( ISCALE.EQ.1 ) THEN
  419:          IF( INFO.EQ.0 ) THEN
  420:             IMAX = M
  421:          ELSE
  422:             IMAX = INFO - 1
  423:          END IF
  424:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  425:       END IF
  426: *
  427: *     If eigenvalues are not in order, then sort them, along with
  428: *     eigenvectors.
  429: *
  430:       IF( WANTZ ) THEN
  431:          DO 40 J = 1, M - 1
  432:             I = 0
  433:             TMP1 = W( J )
  434:             DO 30 JJ = J + 1, M
  435:                IF( W( JJ ).LT.TMP1 ) THEN
  436:                   I = JJ
  437:                   TMP1 = W( JJ )
  438:                END IF
  439:    30       CONTINUE
  440: *
  441:             IF( I.NE.0 ) THEN
  442:                ITMP1 = IWORK( INDIBL+I-1 )
  443:                W( I ) = W( J )
  444:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  445:                W( J ) = TMP1
  446:                IWORK( INDIBL+J-1 ) = ITMP1
  447:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  448:                IF( INFO.NE.0 ) THEN
  449:                   ITMP1 = IFAIL( I )
  450:                   IFAIL( I ) = IFAIL( J )
  451:                   IFAIL( J ) = ITMP1
  452:                END IF
  453:             END IF
  454:    40    CONTINUE
  455:       END IF
  456: *
  457:       RETURN
  458: *
  459: *     End of DSTEVX
  460: *
  461:       END

CVSweb interface <joel.bertrand@systella.fr>