Annotation of rpl/lapack/lapack/dstevx.f, revision 1.17

1.8       bertrand    1: *> \brief <b> DSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DSTEVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevx.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
                     22: *                          M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, RANGE
                     26: *       INTEGER            IL, INFO, IU, LDZ, M, N
                     27: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IFAIL( * ), IWORK( * )
                     31: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
                     32: *       ..
1.15      bertrand   33: *
1.8       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DSTEVX computes selected eigenvalues and, optionally, eigenvectors
                     41: *> of a real symmetric tridiagonal matrix A.  Eigenvalues and
                     42: *> eigenvectors can be selected by specifying either a range of values
                     43: *> or a range of indices for the desired eigenvalues.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] JOBZ
                     50: *> \verbatim
                     51: *>          JOBZ is CHARACTER*1
                     52: *>          = 'N':  Compute eigenvalues only;
                     53: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] RANGE
                     57: *> \verbatim
                     58: *>          RANGE is CHARACTER*1
                     59: *>          = 'A': all eigenvalues will be found.
                     60: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     61: *>                 will be found.
                     62: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] N
                     66: *> \verbatim
                     67: *>          N is INTEGER
                     68: *>          The order of the matrix.  N >= 0.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in,out] D
                     72: *> \verbatim
                     73: *>          D is DOUBLE PRECISION array, dimension (N)
                     74: *>          On entry, the n diagonal elements of the tridiagonal matrix
                     75: *>          A.
                     76: *>          On exit, D may be multiplied by a constant factor chosen
                     77: *>          to avoid over/underflow in computing the eigenvalues.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in,out] E
                     81: *> \verbatim
                     82: *>          E is DOUBLE PRECISION array, dimension (max(1,N-1))
                     83: *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
                     84: *>          matrix A in elements 1 to N-1 of E.
                     85: *>          On exit, E may be multiplied by a constant factor chosen
                     86: *>          to avoid over/underflow in computing the eigenvalues.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] VL
                     90: *> \verbatim
                     91: *>          VL is DOUBLE PRECISION
1.13      bertrand   92: *>          If RANGE='V', the lower bound of the interval to
                     93: *>          be searched for eigenvalues. VL < VU.
                     94: *>          Not referenced if RANGE = 'A' or 'I'.
1.8       bertrand   95: *> \endverbatim
                     96: *>
                     97: *> \param[in] VU
                     98: *> \verbatim
                     99: *>          VU is DOUBLE PRECISION
1.13      bertrand  100: *>          If RANGE='V', the upper bound of the interval to
1.8       bertrand  101: *>          be searched for eigenvalues. VL < VU.
                    102: *>          Not referenced if RANGE = 'A' or 'I'.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] IL
                    106: *> \verbatim
                    107: *>          IL is INTEGER
1.13      bertrand  108: *>          If RANGE='I', the index of the
                    109: *>          smallest eigenvalue to be returned.
                    110: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    111: *>          Not referenced if RANGE = 'A' or 'V'.
1.8       bertrand  112: *> \endverbatim
                    113: *>
                    114: *> \param[in] IU
                    115: *> \verbatim
                    116: *>          IU is INTEGER
1.13      bertrand  117: *>          If RANGE='I', the index of the
                    118: *>          largest eigenvalue to be returned.
1.8       bertrand  119: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    120: *>          Not referenced if RANGE = 'A' or 'V'.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] ABSTOL
                    124: *> \verbatim
                    125: *>          ABSTOL is DOUBLE PRECISION
                    126: *>          The absolute error tolerance for the eigenvalues.
                    127: *>          An approximate eigenvalue is accepted as converged
                    128: *>          when it is determined to lie in an interval [a,b]
                    129: *>          of width less than or equal to
                    130: *>
                    131: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    132: *>
                    133: *>          where EPS is the machine precision.  If ABSTOL is less
                    134: *>          than or equal to zero, then  EPS*|T|  will be used in
                    135: *>          its place, where |T| is the 1-norm of the tridiagonal
                    136: *>          matrix.
                    137: *>
                    138: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    139: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    140: *>          If this routine returns with INFO>0, indicating that some
                    141: *>          eigenvectors did not converge, try setting ABSTOL to
                    142: *>          2*DLAMCH('S').
                    143: *>
                    144: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    145: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    146: *>          Kahan, LAPACK Working Note #3.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] M
                    150: *> \verbatim
                    151: *>          M is INTEGER
                    152: *>          The total number of eigenvalues found.  0 <= M <= N.
                    153: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] W
                    157: *> \verbatim
                    158: *>          W is DOUBLE PRECISION array, dimension (N)
                    159: *>          The first M elements contain the selected eigenvalues in
                    160: *>          ascending order.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] Z
                    164: *> \verbatim
                    165: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
                    166: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    167: *>          contain the orthonormal eigenvectors of the matrix A
                    168: *>          corresponding to the selected eigenvalues, with the i-th
                    169: *>          column of Z holding the eigenvector associated with W(i).
                    170: *>          If an eigenvector fails to converge (INFO > 0), then that
                    171: *>          column of Z contains the latest approximation to the
                    172: *>          eigenvector, and the index of the eigenvector is returned
                    173: *>          in IFAIL.  If JOBZ = 'N', then Z is not referenced.
                    174: *>          Note: the user must ensure that at least max(1,M) columns are
                    175: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    176: *>          is not known in advance and an upper bound must be used.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[in] LDZ
                    180: *> \verbatim
                    181: *>          LDZ is INTEGER
                    182: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    183: *>          JOBZ = 'V', LDZ >= max(1,N).
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[out] WORK
                    187: *> \verbatim
                    188: *>          WORK is DOUBLE PRECISION array, dimension (5*N)
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[out] IWORK
                    192: *> \verbatim
                    193: *>          IWORK is INTEGER array, dimension (5*N)
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[out] IFAIL
                    197: *> \verbatim
                    198: *>          IFAIL is INTEGER array, dimension (N)
                    199: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    200: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    201: *>          indices of the eigenvectors that failed to converge.
                    202: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    203: *> \endverbatim
                    204: *>
                    205: *> \param[out] INFO
                    206: *> \verbatim
                    207: *>          INFO is INTEGER
                    208: *>          = 0:  successful exit
                    209: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    210: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    211: *>                Their indices are stored in array IFAIL.
                    212: *> \endverbatim
                    213: *
                    214: *  Authors:
                    215: *  ========
                    216: *
1.15      bertrand  217: *> \author Univ. of Tennessee
                    218: *> \author Univ. of California Berkeley
                    219: *> \author Univ. of Colorado Denver
                    220: *> \author NAG Ltd.
1.8       bertrand  221: *
1.13      bertrand  222: *> \date June 2016
1.8       bertrand  223: *
                    224: *> \ingroup doubleOTHEReigen
                    225: *
                    226: *  =====================================================================
1.1       bertrand  227:       SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
                    228:      $                   M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
                    229: *
1.15      bertrand  230: *  -- LAPACK driver routine (version 3.7.0) --
1.1       bertrand  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13      bertrand  233: *     June 2016
1.1       bertrand  234: *
                    235: *     .. Scalar Arguments ..
                    236:       CHARACTER          JOBZ, RANGE
                    237:       INTEGER            IL, INFO, IU, LDZ, M, N
                    238:       DOUBLE PRECISION   ABSTOL, VL, VU
                    239: *     ..
                    240: *     .. Array Arguments ..
                    241:       INTEGER            IFAIL( * ), IWORK( * )
                    242:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
                    243: *     ..
                    244: *
                    245: *  =====================================================================
                    246: *
                    247: *     .. Parameters ..
                    248:       DOUBLE PRECISION   ZERO, ONE
                    249:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    250: *     ..
                    251: *     .. Local Scalars ..
                    252:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
                    253:       CHARACTER          ORDER
                    254:       INTEGER            I, IMAX, INDIBL, INDISP, INDIWO, INDWRK,
                    255:      $                   ISCALE, ITMP1, J, JJ, NSPLIT
                    256:       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
                    257:      $                   TMP1, TNRM, VLL, VUU
                    258: *     ..
                    259: *     .. External Functions ..
                    260:       LOGICAL            LSAME
                    261:       DOUBLE PRECISION   DLAMCH, DLANST
                    262:       EXTERNAL           LSAME, DLAMCH, DLANST
                    263: *     ..
                    264: *     .. External Subroutines ..
                    265:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEIN, DSTEQR, DSTERF,
                    266:      $                   DSWAP, XERBLA
                    267: *     ..
                    268: *     .. Intrinsic Functions ..
                    269:       INTRINSIC          MAX, MIN, SQRT
                    270: *     ..
                    271: *     .. Executable Statements ..
                    272: *
                    273: *     Test the input parameters.
                    274: *
                    275:       WANTZ = LSAME( JOBZ, 'V' )
                    276:       ALLEIG = LSAME( RANGE, 'A' )
                    277:       VALEIG = LSAME( RANGE, 'V' )
                    278:       INDEIG = LSAME( RANGE, 'I' )
                    279: *
                    280:       INFO = 0
                    281:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    282:          INFO = -1
                    283:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    284:          INFO = -2
                    285:       ELSE IF( N.LT.0 ) THEN
                    286:          INFO = -3
                    287:       ELSE
                    288:          IF( VALEIG ) THEN
                    289:             IF( N.GT.0 .AND. VU.LE.VL )
                    290:      $         INFO = -7
                    291:          ELSE IF( INDEIG ) THEN
                    292:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    293:                INFO = -8
                    294:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    295:                INFO = -9
                    296:             END IF
                    297:          END IF
                    298:       END IF
                    299:       IF( INFO.EQ.0 ) THEN
                    300:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    301:      $      INFO = -14
                    302:       END IF
                    303: *
                    304:       IF( INFO.NE.0 ) THEN
                    305:          CALL XERBLA( 'DSTEVX', -INFO )
                    306:          RETURN
                    307:       END IF
                    308: *
                    309: *     Quick return if possible
                    310: *
                    311:       M = 0
                    312:       IF( N.EQ.0 )
                    313:      $   RETURN
                    314: *
                    315:       IF( N.EQ.1 ) THEN
                    316:          IF( ALLEIG .OR. INDEIG ) THEN
                    317:             M = 1
                    318:             W( 1 ) = D( 1 )
                    319:          ELSE
                    320:             IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
                    321:                M = 1
                    322:                W( 1 ) = D( 1 )
                    323:             END IF
                    324:          END IF
                    325:          IF( WANTZ )
                    326:      $      Z( 1, 1 ) = ONE
                    327:          RETURN
                    328:       END IF
                    329: *
                    330: *     Get machine constants.
                    331: *
                    332:       SAFMIN = DLAMCH( 'Safe minimum' )
                    333:       EPS = DLAMCH( 'Precision' )
                    334:       SMLNUM = SAFMIN / EPS
                    335:       BIGNUM = ONE / SMLNUM
                    336:       RMIN = SQRT( SMLNUM )
                    337:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    338: *
                    339: *     Scale matrix to allowable range, if necessary.
                    340: *
                    341:       ISCALE = 0
                    342:       IF( VALEIG ) THEN
                    343:          VLL = VL
                    344:          VUU = VU
                    345:       ELSE
                    346:          VLL = ZERO
                    347:          VUU = ZERO
                    348:       END IF
                    349:       TNRM = DLANST( 'M', N, D, E )
                    350:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
                    351:          ISCALE = 1
                    352:          SIGMA = RMIN / TNRM
                    353:       ELSE IF( TNRM.GT.RMAX ) THEN
                    354:          ISCALE = 1
                    355:          SIGMA = RMAX / TNRM
                    356:       END IF
                    357:       IF( ISCALE.EQ.1 ) THEN
                    358:          CALL DSCAL( N, SIGMA, D, 1 )
                    359:          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
                    360:          IF( VALEIG ) THEN
                    361:             VLL = VL*SIGMA
                    362:             VUU = VU*SIGMA
                    363:          END IF
                    364:       END IF
                    365: *
                    366: *     If all eigenvalues are desired and ABSTOL is less than zero, then
                    367: *     call DSTERF or SSTEQR.  If this fails for some eigenvalue, then
                    368: *     try DSTEBZ.
                    369: *
                    370:       TEST = .FALSE.
                    371:       IF( INDEIG ) THEN
                    372:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    373:             TEST = .TRUE.
                    374:          END IF
                    375:       END IF
                    376:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    377:          CALL DCOPY( N, D, 1, W, 1 )
                    378:          CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
                    379:          INDWRK = N + 1
                    380:          IF( .NOT.WANTZ ) THEN
                    381:             CALL DSTERF( N, W, WORK, INFO )
                    382:          ELSE
                    383:             CALL DSTEQR( 'I', N, W, WORK, Z, LDZ, WORK( INDWRK ), INFO )
                    384:             IF( INFO.EQ.0 ) THEN
                    385:                DO 10 I = 1, N
                    386:                   IFAIL( I ) = 0
                    387:    10          CONTINUE
                    388:             END IF
                    389:          END IF
                    390:          IF( INFO.EQ.0 ) THEN
                    391:             M = N
                    392:             GO TO 20
                    393:          END IF
                    394:          INFO = 0
                    395:       END IF
                    396: *
                    397: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    398: *
                    399:       IF( WANTZ ) THEN
                    400:          ORDER = 'B'
                    401:       ELSE
                    402:          ORDER = 'E'
                    403:       END IF
                    404:       INDWRK = 1
                    405:       INDIBL = 1
                    406:       INDISP = INDIBL + N
                    407:       INDIWO = INDISP + N
                    408:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
                    409:      $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ),
                    410:      $             WORK( INDWRK ), IWORK( INDIWO ), INFO )
                    411: *
                    412:       IF( WANTZ ) THEN
                    413:          CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
                    414:      $                Z, LDZ, WORK( INDWRK ), IWORK( INDIWO ), IFAIL,
                    415:      $                INFO )
                    416:       END IF
                    417: *
                    418: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    419: *
                    420:    20 CONTINUE
                    421:       IF( ISCALE.EQ.1 ) THEN
                    422:          IF( INFO.EQ.0 ) THEN
                    423:             IMAX = M
                    424:          ELSE
                    425:             IMAX = INFO - 1
                    426:          END IF
                    427:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    428:       END IF
                    429: *
                    430: *     If eigenvalues are not in order, then sort them, along with
                    431: *     eigenvectors.
                    432: *
                    433:       IF( WANTZ ) THEN
                    434:          DO 40 J = 1, M - 1
                    435:             I = 0
                    436:             TMP1 = W( J )
                    437:             DO 30 JJ = J + 1, M
                    438:                IF( W( JJ ).LT.TMP1 ) THEN
                    439:                   I = JJ
                    440:                   TMP1 = W( JJ )
                    441:                END IF
                    442:    30       CONTINUE
                    443: *
                    444:             IF( I.NE.0 ) THEN
                    445:                ITMP1 = IWORK( INDIBL+I-1 )
                    446:                W( I ) = W( J )
                    447:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    448:                W( J ) = TMP1
                    449:                IWORK( INDIBL+J-1 ) = ITMP1
                    450:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    451:                IF( INFO.NE.0 ) THEN
                    452:                   ITMP1 = IFAIL( I )
                    453:                   IFAIL( I ) = IFAIL( J )
                    454:                   IFAIL( J ) = ITMP1
                    455:                END IF
                    456:             END IF
                    457:    40    CONTINUE
                    458:       END IF
                    459: *
                    460:       RETURN
                    461: *
                    462: *     End of DSTEVX
                    463: *
                    464:       END

CVSweb interface <joel.bertrand@systella.fr>