File:  [local] / rpl / lapack / lapack / dstevr.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
    2:      $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
    3:      $                   LIWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE
   12:       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            ISUPPZ( * ), IWORK( * )
   17:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DSTEVR computes selected eigenvalues and, optionally, eigenvectors
   24: *  of a real symmetric tridiagonal matrix T.  Eigenvalues and
   25: *  eigenvectors can be selected by specifying either a range of values
   26: *  or a range of indices for the desired eigenvalues.
   27: *
   28: *  Whenever possible, DSTEVR calls DSTEMR to compute the
   29: *  eigenspectrum using Relatively Robust Representations.  DSTEMR
   30: *  computes eigenvalues by the dqds algorithm, while orthogonal
   31: *  eigenvectors are computed from various "good" L D L^T representations
   32: *  (also known as Relatively Robust Representations). Gram-Schmidt
   33: *  orthogonalization is avoided as far as possible. More specifically,
   34: *  the various steps of the algorithm are as follows. For the i-th
   35: *  unreduced block of T,
   36: *     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
   37: *          is a relatively robust representation,
   38: *     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
   39: *         relative accuracy by the dqds algorithm,
   40: *     (c) If there is a cluster of close eigenvalues, "choose" sigma_i
   41: *         close to the cluster, and go to step (a),
   42: *     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
   43: *         compute the corresponding eigenvector by forming a
   44: *         rank-revealing twisted factorization.
   45: *  The desired accuracy of the output can be specified by the input
   46: *  parameter ABSTOL.
   47: *
   48: *  For more details, see "A new O(n^2) algorithm for the symmetric
   49: *  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
   50: *  Computer Science Division Technical Report No. UCB//CSD-97-971,
   51: *  UC Berkeley, May 1997.
   52: *
   53: *
   54: *  Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
   55: *  on machines which conform to the ieee-754 floating point standard.
   56: *  DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
   57: *  when partial spectrum requests are made.
   58: *
   59: *  Normal execution of DSTEMR may create NaNs and infinities and
   60: *  hence may abort due to a floating point exception in environments
   61: *  which do not handle NaNs and infinities in the ieee standard default
   62: *  manner.
   63: *
   64: *  Arguments
   65: *  =========
   66: *
   67: *  JOBZ    (input) CHARACTER*1
   68: *          = 'N':  Compute eigenvalues only;
   69: *          = 'V':  Compute eigenvalues and eigenvectors.
   70: *
   71: *  RANGE   (input) CHARACTER*1
   72: *          = 'A': all eigenvalues will be found.
   73: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   74: *                 will be found.
   75: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   76: ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
   77: ********** DSTEIN are called
   78: *
   79: *  N       (input) INTEGER
   80: *          The order of the matrix.  N >= 0.
   81: *
   82: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   83: *          On entry, the n diagonal elements of the tridiagonal matrix
   84: *          A.
   85: *          On exit, D may be multiplied by a constant factor chosen
   86: *          to avoid over/underflow in computing the eigenvalues.
   87: *
   88: *  E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
   89: *          On entry, the (n-1) subdiagonal elements of the tridiagonal
   90: *          matrix A in elements 1 to N-1 of E.
   91: *          On exit, E may be multiplied by a constant factor chosen
   92: *          to avoid over/underflow in computing the eigenvalues.
   93: *
   94: *  VL      (input) DOUBLE PRECISION
   95: *  VU      (input) DOUBLE PRECISION
   96: *          If RANGE='V', the lower and upper bounds of the interval to
   97: *          be searched for eigenvalues. VL < VU.
   98: *          Not referenced if RANGE = 'A' or 'I'.
   99: *
  100: *  IL      (input) INTEGER
  101: *  IU      (input) INTEGER
  102: *          If RANGE='I', the indices (in ascending order) of the
  103: *          smallest and largest eigenvalues to be returned.
  104: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  105: *          Not referenced if RANGE = 'A' or 'V'.
  106: *
  107: *  ABSTOL  (input) DOUBLE PRECISION
  108: *          The absolute error tolerance for the eigenvalues.
  109: *          An approximate eigenvalue is accepted as converged
  110: *          when it is determined to lie in an interval [a,b]
  111: *          of width less than or equal to
  112: *
  113: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
  114: *
  115: *          where EPS is the machine precision.  If ABSTOL is less than
  116: *          or equal to zero, then  EPS*|T|  will be used in its place,
  117: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  118: *          by reducing A to tridiagonal form.
  119: *
  120: *          See "Computing Small Singular Values of Bidiagonal Matrices
  121: *          with Guaranteed High Relative Accuracy," by Demmel and
  122: *          Kahan, LAPACK Working Note #3.
  123: *
  124: *          If high relative accuracy is important, set ABSTOL to
  125: *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  126: *          eigenvalues are computed to high relative accuracy when
  127: *          possible in future releases.  The current code does not
  128: *          make any guarantees about high relative accuracy, but
  129: *          future releases will. See J. Barlow and J. Demmel,
  130: *          "Computing Accurate Eigensystems of Scaled Diagonally
  131: *          Dominant Matrices", LAPACK Working Note #7, for a discussion
  132: *          of which matrices define their eigenvalues to high relative
  133: *          accuracy.
  134: *
  135: *  M       (output) INTEGER
  136: *          The total number of eigenvalues found.  0 <= M <= N.
  137: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  138: *
  139: *  W       (output) DOUBLE PRECISION array, dimension (N)
  140: *          The first M elements contain the selected eigenvalues in
  141: *          ascending order.
  142: *
  143: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  144: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  145: *          contain the orthonormal eigenvectors of the matrix A
  146: *          corresponding to the selected eigenvalues, with the i-th
  147: *          column of Z holding the eigenvector associated with W(i).
  148: *          Note: the user must ensure that at least max(1,M) columns are
  149: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  150: *          is not known in advance and an upper bound must be used.
  151: *
  152: *  LDZ     (input) INTEGER
  153: *          The leading dimension of the array Z.  LDZ >= 1, and if
  154: *          JOBZ = 'V', LDZ >= max(1,N).
  155: *
  156: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
  157: *          The support of the eigenvectors in Z, i.e., the indices
  158: *          indicating the nonzero elements in Z. The i-th eigenvector
  159: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  160: *          ISUPPZ( 2*i ).
  161: ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  162: *
  163: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  164: *          On exit, if INFO = 0, WORK(1) returns the optimal (and
  165: *          minimal) LWORK.
  166: *
  167: *  LWORK   (input) INTEGER
  168: *          The dimension of the array WORK.  LWORK >= max(1,20*N).
  169: *
  170: *          If LWORK = -1, then a workspace query is assumed; the routine
  171: *          only calculates the optimal sizes of the WORK and IWORK
  172: *          arrays, returns these values as the first entries of the WORK
  173: *          and IWORK arrays, and no error message related to LWORK or
  174: *          LIWORK is issued by XERBLA.
  175: *
  176: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
  177: *          On exit, if INFO = 0, IWORK(1) returns the optimal (and
  178: *          minimal) LIWORK.
  179: *
  180: *  LIWORK  (input) INTEGER
  181: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  182: *
  183: *          If LIWORK = -1, then a workspace query is assumed; the
  184: *          routine only calculates the optimal sizes of the WORK and
  185: *          IWORK arrays, returns these values as the first entries of
  186: *          the WORK and IWORK arrays, and no error message related to
  187: *          LWORK or LIWORK is issued by XERBLA.
  188: *
  189: *  INFO    (output) INTEGER
  190: *          = 0:  successful exit
  191: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  192: *          > 0:  Internal error
  193: *
  194: *  Further Details
  195: *  ===============
  196: *
  197: *  Based on contributions by
  198: *     Inderjit Dhillon, IBM Almaden, USA
  199: *     Osni Marques, LBNL/NERSC, USA
  200: *     Ken Stanley, Computer Science Division, University of
  201: *       California at Berkeley, USA
  202: *
  203: *  =====================================================================
  204: *
  205: *     .. Parameters ..
  206:       DOUBLE PRECISION   ZERO, ONE, TWO
  207:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  208: *     ..
  209: *     .. Local Scalars ..
  210:       LOGICAL            ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
  211:      $                   TRYRAC
  212:       CHARACTER          ORDER
  213:       INTEGER            I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
  214:      $                   INDIWO, ISCALE, ITMP1, J, JJ, LIWMIN, LWMIN,
  215:      $                   NSPLIT
  216:       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
  217:      $                   TMP1, TNRM, VLL, VUU
  218: *     ..
  219: *     .. External Functions ..
  220:       LOGICAL            LSAME
  221:       INTEGER            ILAENV
  222:       DOUBLE PRECISION   DLAMCH, DLANST
  223:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
  224: *     ..
  225: *     .. External Subroutines ..
  226:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEMR, DSTEIN, DSTERF,
  227:      $                   DSWAP, XERBLA
  228: *     ..
  229: *     .. Intrinsic Functions ..
  230:       INTRINSIC          MAX, MIN, SQRT
  231: *     ..
  232: *     .. Executable Statements ..
  233: *
  234: *
  235: *     Test the input parameters.
  236: *
  237:       IEEEOK = ILAENV( 10, 'DSTEVR', 'N', 1, 2, 3, 4 )
  238: *
  239:       WANTZ = LSAME( JOBZ, 'V' )
  240:       ALLEIG = LSAME( RANGE, 'A' )
  241:       VALEIG = LSAME( RANGE, 'V' )
  242:       INDEIG = LSAME( RANGE, 'I' )
  243: *
  244:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
  245:       LWMIN = MAX( 1, 20*N )
  246:       LIWMIN = MAX( 1, 10*N )
  247: *
  248: *
  249:       INFO = 0
  250:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  251:          INFO = -1
  252:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  253:          INFO = -2
  254:       ELSE IF( N.LT.0 ) THEN
  255:          INFO = -3
  256:       ELSE
  257:          IF( VALEIG ) THEN
  258:             IF( N.GT.0 .AND. VU.LE.VL )
  259:      $         INFO = -7
  260:          ELSE IF( INDEIG ) THEN
  261:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  262:                INFO = -8
  263:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  264:                INFO = -9
  265:             END IF
  266:          END IF
  267:       END IF
  268:       IF( INFO.EQ.0 ) THEN
  269:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  270:             INFO = -14
  271:          END IF
  272:       END IF
  273: *
  274:       IF( INFO.EQ.0 ) THEN
  275:          WORK( 1 ) = LWMIN
  276:          IWORK( 1 ) = LIWMIN
  277: *
  278:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  279:             INFO = -17
  280:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  281:             INFO = -19
  282:          END IF
  283:       END IF
  284: *
  285:       IF( INFO.NE.0 ) THEN
  286:          CALL XERBLA( 'DSTEVR', -INFO )
  287:          RETURN
  288:       ELSE IF( LQUERY ) THEN
  289:          RETURN
  290:       END IF
  291: *
  292: *     Quick return if possible
  293: *
  294:       M = 0
  295:       IF( N.EQ.0 )
  296:      $   RETURN
  297: *
  298:       IF( N.EQ.1 ) THEN
  299:          IF( ALLEIG .OR. INDEIG ) THEN
  300:             M = 1
  301:             W( 1 ) = D( 1 )
  302:          ELSE
  303:             IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
  304:                M = 1
  305:                W( 1 ) = D( 1 )
  306:             END IF
  307:          END IF
  308:          IF( WANTZ )
  309:      $      Z( 1, 1 ) = ONE
  310:          RETURN
  311:       END IF
  312: *
  313: *     Get machine constants.
  314: *
  315:       SAFMIN = DLAMCH( 'Safe minimum' )
  316:       EPS = DLAMCH( 'Precision' )
  317:       SMLNUM = SAFMIN / EPS
  318:       BIGNUM = ONE / SMLNUM
  319:       RMIN = SQRT( SMLNUM )
  320:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  321: *
  322: *
  323: *     Scale matrix to allowable range, if necessary.
  324: *
  325:       ISCALE = 0
  326:       VLL = VL
  327:       VUU = VU
  328: *
  329:       TNRM = DLANST( 'M', N, D, E )
  330:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  331:          ISCALE = 1
  332:          SIGMA = RMIN / TNRM
  333:       ELSE IF( TNRM.GT.RMAX ) THEN
  334:          ISCALE = 1
  335:          SIGMA = RMAX / TNRM
  336:       END IF
  337:       IF( ISCALE.EQ.1 ) THEN
  338:          CALL DSCAL( N, SIGMA, D, 1 )
  339:          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
  340:          IF( VALEIG ) THEN
  341:             VLL = VL*SIGMA
  342:             VUU = VU*SIGMA
  343:          END IF
  344:       END IF
  345: 
  346: *     Initialize indices into workspaces.  Note: These indices are used only
  347: *     if DSTERF or DSTEMR fail.
  348: 
  349: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  350: *     stores the block indices of each of the M<=N eigenvalues.
  351:       INDIBL = 1
  352: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  353: *     stores the starting and finishing indices of each block.
  354:       INDISP = INDIBL + N
  355: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  356: *     that corresponding to eigenvectors that fail to converge in
  357: *     DSTEIN.  This information is discarded; if any fail, the driver
  358: *     returns INFO > 0.
  359:       INDIFL = INDISP + N
  360: *     INDIWO is the offset of the remaining integer workspace.
  361:       INDIWO = INDISP + N
  362: *
  363: *     If all eigenvalues are desired, then
  364: *     call DSTERF or DSTEMR.  If this fails for some eigenvalue, then
  365: *     try DSTEBZ.
  366: *
  367: *
  368:       TEST = .FALSE.
  369:       IF( INDEIG ) THEN
  370:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  371:             TEST = .TRUE.
  372:          END IF
  373:       END IF
  374:       IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
  375:          CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
  376:          IF( .NOT.WANTZ ) THEN
  377:             CALL DCOPY( N, D, 1, W, 1 )
  378:             CALL DSTERF( N, W, WORK, INFO )
  379:          ELSE
  380:             CALL DCOPY( N, D, 1, WORK( N+1 ), 1 )
  381:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  382:                TRYRAC = .TRUE.
  383:             ELSE
  384:                TRYRAC = .FALSE.
  385:             END IF
  386:             CALL DSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
  387:      $                   IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
  388:      $                   WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
  389: *
  390:          END IF
  391:          IF( INFO.EQ.0 ) THEN
  392:             M = N
  393:             GO TO 10
  394:          END IF
  395:          INFO = 0
  396:       END IF
  397: *
  398: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
  399: *
  400:       IF( WANTZ ) THEN
  401:          ORDER = 'B'
  402:       ELSE
  403:          ORDER = 'E'
  404:       END IF
  405: 
  406:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
  407:      $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
  408:      $             IWORK( INDIWO ), INFO )
  409: *
  410:       IF( WANTZ ) THEN
  411:          CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
  412:      $                Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
  413:      $                INFO )
  414:       END IF
  415: *
  416: *     If matrix was scaled, then rescale eigenvalues appropriately.
  417: *
  418:    10 CONTINUE
  419:       IF( ISCALE.EQ.1 ) THEN
  420:          IF( INFO.EQ.0 ) THEN
  421:             IMAX = M
  422:          ELSE
  423:             IMAX = INFO - 1
  424:          END IF
  425:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  426:       END IF
  427: *
  428: *     If eigenvalues are not in order, then sort them, along with
  429: *     eigenvectors.
  430: *
  431:       IF( WANTZ ) THEN
  432:          DO 30 J = 1, M - 1
  433:             I = 0
  434:             TMP1 = W( J )
  435:             DO 20 JJ = J + 1, M
  436:                IF( W( JJ ).LT.TMP1 ) THEN
  437:                   I = JJ
  438:                   TMP1 = W( JJ )
  439:                END IF
  440:    20       CONTINUE
  441: *
  442:             IF( I.NE.0 ) THEN
  443:                ITMP1 = IWORK( I )
  444:                W( I ) = W( J )
  445:                IWORK( I ) = IWORK( J )
  446:                W( J ) = TMP1
  447:                IWORK( J ) = ITMP1
  448:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  449:             END IF
  450:    30    CONTINUE
  451:       END IF
  452: *
  453: *      Causes problems with tests 19 & 20:
  454: *      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
  455: *
  456: *
  457:       WORK( 1 ) = LWMIN
  458:       IWORK( 1 ) = LIWMIN
  459:       RETURN
  460: *
  461: *     End of DSTEVR
  462: *
  463:       END

CVSweb interface <joel.bertrand@systella.fr>