Annotation of rpl/lapack/lapack/dstevr.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
                      2:      $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
                      3:      $                   LIWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE
                     12:       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            ISUPPZ( * ), IWORK( * )
                     17:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  DSTEVR computes selected eigenvalues and, optionally, eigenvectors
                     24: *  of a real symmetric tridiagonal matrix T.  Eigenvalues and
                     25: *  eigenvectors can be selected by specifying either a range of values
                     26: *  or a range of indices for the desired eigenvalues.
                     27: *
                     28: *  Whenever possible, DSTEVR calls DSTEMR to compute the
                     29: *  eigenspectrum using Relatively Robust Representations.  DSTEMR
                     30: *  computes eigenvalues by the dqds algorithm, while orthogonal
                     31: *  eigenvectors are computed from various "good" L D L^T representations
                     32: *  (also known as Relatively Robust Representations). Gram-Schmidt
                     33: *  orthogonalization is avoided as far as possible. More specifically,
                     34: *  the various steps of the algorithm are as follows. For the i-th
                     35: *  unreduced block of T,
                     36: *     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
                     37: *          is a relatively robust representation,
                     38: *     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
                     39: *         relative accuracy by the dqds algorithm,
                     40: *     (c) If there is a cluster of close eigenvalues, "choose" sigma_i
                     41: *         close to the cluster, and go to step (a),
                     42: *     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
                     43: *         compute the corresponding eigenvector by forming a
                     44: *         rank-revealing twisted factorization.
                     45: *  The desired accuracy of the output can be specified by the input
                     46: *  parameter ABSTOL.
                     47: *
                     48: *  For more details, see "A new O(n^2) algorithm for the symmetric
                     49: *  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
                     50: *  Computer Science Division Technical Report No. UCB//CSD-97-971,
                     51: *  UC Berkeley, May 1997.
                     52: *
                     53: *
                     54: *  Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
                     55: *  on machines which conform to the ieee-754 floating point standard.
                     56: *  DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
                     57: *  when partial spectrum requests are made.
                     58: *
                     59: *  Normal execution of DSTEMR may create NaNs and infinities and
                     60: *  hence may abort due to a floating point exception in environments
                     61: *  which do not handle NaNs and infinities in the ieee standard default
                     62: *  manner.
                     63: *
                     64: *  Arguments
                     65: *  =========
                     66: *
                     67: *  JOBZ    (input) CHARACTER*1
                     68: *          = 'N':  Compute eigenvalues only;
                     69: *          = 'V':  Compute eigenvalues and eigenvectors.
                     70: *
                     71: *  RANGE   (input) CHARACTER*1
                     72: *          = 'A': all eigenvalues will be found.
                     73: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     74: *                 will be found.
                     75: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     76: ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
                     77: ********** DSTEIN are called
                     78: *
                     79: *  N       (input) INTEGER
                     80: *          The order of the matrix.  N >= 0.
                     81: *
                     82: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                     83: *          On entry, the n diagonal elements of the tridiagonal matrix
                     84: *          A.
                     85: *          On exit, D may be multiplied by a constant factor chosen
                     86: *          to avoid over/underflow in computing the eigenvalues.
                     87: *
                     88: *  E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
                     89: *          On entry, the (n-1) subdiagonal elements of the tridiagonal
                     90: *          matrix A in elements 1 to N-1 of E.
                     91: *          On exit, E may be multiplied by a constant factor chosen
                     92: *          to avoid over/underflow in computing the eigenvalues.
                     93: *
                     94: *  VL      (input) DOUBLE PRECISION
                     95: *  VU      (input) DOUBLE PRECISION
                     96: *          If RANGE='V', the lower and upper bounds of the interval to
                     97: *          be searched for eigenvalues. VL < VU.
                     98: *          Not referenced if RANGE = 'A' or 'I'.
                     99: *
                    100: *  IL      (input) INTEGER
                    101: *  IU      (input) INTEGER
                    102: *          If RANGE='I', the indices (in ascending order) of the
                    103: *          smallest and largest eigenvalues to be returned.
                    104: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    105: *          Not referenced if RANGE = 'A' or 'V'.
                    106: *
                    107: *  ABSTOL  (input) DOUBLE PRECISION
                    108: *          The absolute error tolerance for the eigenvalues.
                    109: *          An approximate eigenvalue is accepted as converged
                    110: *          when it is determined to lie in an interval [a,b]
                    111: *          of width less than or equal to
                    112: *
                    113: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    114: *
                    115: *          where EPS is the machine precision.  If ABSTOL is less than
                    116: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    117: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    118: *          by reducing A to tridiagonal form.
                    119: *
                    120: *          See "Computing Small Singular Values of Bidiagonal Matrices
                    121: *          with Guaranteed High Relative Accuracy," by Demmel and
                    122: *          Kahan, LAPACK Working Note #3.
                    123: *
                    124: *          If high relative accuracy is important, set ABSTOL to
                    125: *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
                    126: *          eigenvalues are computed to high relative accuracy when
                    127: *          possible in future releases.  The current code does not
                    128: *          make any guarantees about high relative accuracy, but
                    129: *          future releases will. See J. Barlow and J. Demmel,
                    130: *          "Computing Accurate Eigensystems of Scaled Diagonally
                    131: *          Dominant Matrices", LAPACK Working Note #7, for a discussion
                    132: *          of which matrices define their eigenvalues to high relative
                    133: *          accuracy.
                    134: *
                    135: *  M       (output) INTEGER
                    136: *          The total number of eigenvalues found.  0 <= M <= N.
                    137: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    138: *
                    139: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    140: *          The first M elements contain the selected eigenvalues in
                    141: *          ascending order.
                    142: *
                    143: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
                    144: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    145: *          contain the orthonormal eigenvectors of the matrix A
                    146: *          corresponding to the selected eigenvalues, with the i-th
                    147: *          column of Z holding the eigenvector associated with W(i).
                    148: *          Note: the user must ensure that at least max(1,M) columns are
                    149: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    150: *          is not known in advance and an upper bound must be used.
                    151: *
                    152: *  LDZ     (input) INTEGER
                    153: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    154: *          JOBZ = 'V', LDZ >= max(1,N).
                    155: *
                    156: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
                    157: *          The support of the eigenvectors in Z, i.e., the indices
                    158: *          indicating the nonzero elements in Z. The i-th eigenvector
                    159: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
                    160: *          ISUPPZ( 2*i ).
                    161: ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
                    162: *
                    163: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    164: *          On exit, if INFO = 0, WORK(1) returns the optimal (and
                    165: *          minimal) LWORK.
                    166: *
                    167: *  LWORK   (input) INTEGER
                    168: *          The dimension of the array WORK.  LWORK >= max(1,20*N).
                    169: *
                    170: *          If LWORK = -1, then a workspace query is assumed; the routine
                    171: *          only calculates the optimal sizes of the WORK and IWORK
                    172: *          arrays, returns these values as the first entries of the WORK
                    173: *          and IWORK arrays, and no error message related to LWORK or
                    174: *          LIWORK is issued by XERBLA.
                    175: *
                    176: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    177: *          On exit, if INFO = 0, IWORK(1) returns the optimal (and
                    178: *          minimal) LIWORK.
                    179: *
                    180: *  LIWORK  (input) INTEGER
                    181: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
                    182: *
                    183: *          If LIWORK = -1, then a workspace query is assumed; the
                    184: *          routine only calculates the optimal sizes of the WORK and
                    185: *          IWORK arrays, returns these values as the first entries of
                    186: *          the WORK and IWORK arrays, and no error message related to
                    187: *          LWORK or LIWORK is issued by XERBLA.
                    188: *
                    189: *  INFO    (output) INTEGER
                    190: *          = 0:  successful exit
                    191: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    192: *          > 0:  Internal error
                    193: *
                    194: *  Further Details
                    195: *  ===============
                    196: *
                    197: *  Based on contributions by
                    198: *     Inderjit Dhillon, IBM Almaden, USA
                    199: *     Osni Marques, LBNL/NERSC, USA
                    200: *     Ken Stanley, Computer Science Division, University of
                    201: *       California at Berkeley, USA
                    202: *
                    203: *  =====================================================================
                    204: *
                    205: *     .. Parameters ..
                    206:       DOUBLE PRECISION   ZERO, ONE, TWO
                    207:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    208: *     ..
                    209: *     .. Local Scalars ..
                    210:       LOGICAL            ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
                    211:      $                   TRYRAC
                    212:       CHARACTER          ORDER
                    213:       INTEGER            I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
                    214:      $                   INDIWO, ISCALE, ITMP1, J, JJ, LIWMIN, LWMIN,
                    215:      $                   NSPLIT
                    216:       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
                    217:      $                   TMP1, TNRM, VLL, VUU
                    218: *     ..
                    219: *     .. External Functions ..
                    220:       LOGICAL            LSAME
                    221:       INTEGER            ILAENV
                    222:       DOUBLE PRECISION   DLAMCH, DLANST
                    223:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
                    224: *     ..
                    225: *     .. External Subroutines ..
                    226:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEMR, DSTEIN, DSTERF,
                    227:      $                   DSWAP, XERBLA
                    228: *     ..
                    229: *     .. Intrinsic Functions ..
                    230:       INTRINSIC          MAX, MIN, SQRT
                    231: *     ..
                    232: *     .. Executable Statements ..
                    233: *
                    234: *
                    235: *     Test the input parameters.
                    236: *
                    237:       IEEEOK = ILAENV( 10, 'DSTEVR', 'N', 1, 2, 3, 4 )
                    238: *
                    239:       WANTZ = LSAME( JOBZ, 'V' )
                    240:       ALLEIG = LSAME( RANGE, 'A' )
                    241:       VALEIG = LSAME( RANGE, 'V' )
                    242:       INDEIG = LSAME( RANGE, 'I' )
                    243: *
                    244:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
                    245:       LWMIN = MAX( 1, 20*N )
                    246:       LIWMIN = MAX( 1, 10*N )
                    247: *
                    248: *
                    249:       INFO = 0
                    250:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    251:          INFO = -1
                    252:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    253:          INFO = -2
                    254:       ELSE IF( N.LT.0 ) THEN
                    255:          INFO = -3
                    256:       ELSE
                    257:          IF( VALEIG ) THEN
                    258:             IF( N.GT.0 .AND. VU.LE.VL )
                    259:      $         INFO = -7
                    260:          ELSE IF( INDEIG ) THEN
                    261:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    262:                INFO = -8
                    263:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    264:                INFO = -9
                    265:             END IF
                    266:          END IF
                    267:       END IF
                    268:       IF( INFO.EQ.0 ) THEN
                    269:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    270:             INFO = -14
                    271:          END IF
                    272:       END IF
                    273: *
                    274:       IF( INFO.EQ.0 ) THEN
                    275:          WORK( 1 ) = LWMIN
                    276:          IWORK( 1 ) = LIWMIN
                    277: *
                    278:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    279:             INFO = -17
                    280:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    281:             INFO = -19
                    282:          END IF
                    283:       END IF
                    284: *
                    285:       IF( INFO.NE.0 ) THEN
                    286:          CALL XERBLA( 'DSTEVR', -INFO )
                    287:          RETURN
                    288:       ELSE IF( LQUERY ) THEN
                    289:          RETURN
                    290:       END IF
                    291: *
                    292: *     Quick return if possible
                    293: *
                    294:       M = 0
                    295:       IF( N.EQ.0 )
                    296:      $   RETURN
                    297: *
                    298:       IF( N.EQ.1 ) THEN
                    299:          IF( ALLEIG .OR. INDEIG ) THEN
                    300:             M = 1
                    301:             W( 1 ) = D( 1 )
                    302:          ELSE
                    303:             IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
                    304:                M = 1
                    305:                W( 1 ) = D( 1 )
                    306:             END IF
                    307:          END IF
                    308:          IF( WANTZ )
                    309:      $      Z( 1, 1 ) = ONE
                    310:          RETURN
                    311:       END IF
                    312: *
                    313: *     Get machine constants.
                    314: *
                    315:       SAFMIN = DLAMCH( 'Safe minimum' )
                    316:       EPS = DLAMCH( 'Precision' )
                    317:       SMLNUM = SAFMIN / EPS
                    318:       BIGNUM = ONE / SMLNUM
                    319:       RMIN = SQRT( SMLNUM )
                    320:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    321: *
                    322: *
                    323: *     Scale matrix to allowable range, if necessary.
                    324: *
                    325:       ISCALE = 0
                    326:       VLL = VL
                    327:       VUU = VU
                    328: *
                    329:       TNRM = DLANST( 'M', N, D, E )
                    330:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
                    331:          ISCALE = 1
                    332:          SIGMA = RMIN / TNRM
                    333:       ELSE IF( TNRM.GT.RMAX ) THEN
                    334:          ISCALE = 1
                    335:          SIGMA = RMAX / TNRM
                    336:       END IF
                    337:       IF( ISCALE.EQ.1 ) THEN
                    338:          CALL DSCAL( N, SIGMA, D, 1 )
                    339:          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
                    340:          IF( VALEIG ) THEN
                    341:             VLL = VL*SIGMA
                    342:             VUU = VU*SIGMA
                    343:          END IF
                    344:       END IF
                    345: 
                    346: *     Initialize indices into workspaces.  Note: These indices are used only
                    347: *     if DSTERF or DSTEMR fail.
                    348: 
                    349: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
                    350: *     stores the block indices of each of the M<=N eigenvalues.
                    351:       INDIBL = 1
                    352: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
                    353: *     stores the starting and finishing indices of each block.
                    354:       INDISP = INDIBL + N
                    355: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
                    356: *     that corresponding to eigenvectors that fail to converge in
                    357: *     DSTEIN.  This information is discarded; if any fail, the driver
                    358: *     returns INFO > 0.
                    359:       INDIFL = INDISP + N
                    360: *     INDIWO is the offset of the remaining integer workspace.
                    361:       INDIWO = INDISP + N
                    362: *
                    363: *     If all eigenvalues are desired, then
                    364: *     call DSTERF or DSTEMR.  If this fails for some eigenvalue, then
                    365: *     try DSTEBZ.
                    366: *
                    367: *
                    368:       TEST = .FALSE.
                    369:       IF( INDEIG ) THEN
                    370:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    371:             TEST = .TRUE.
                    372:          END IF
                    373:       END IF
                    374:       IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
                    375:          CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
                    376:          IF( .NOT.WANTZ ) THEN
                    377:             CALL DCOPY( N, D, 1, W, 1 )
                    378:             CALL DSTERF( N, W, WORK, INFO )
                    379:          ELSE
                    380:             CALL DCOPY( N, D, 1, WORK( N+1 ), 1 )
                    381:             IF (ABSTOL .LE. TWO*N*EPS) THEN
                    382:                TRYRAC = .TRUE.
                    383:             ELSE
                    384:                TRYRAC = .FALSE.
                    385:             END IF
                    386:             CALL DSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
                    387:      $                   IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
                    388:      $                   WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
                    389: *
                    390:          END IF
                    391:          IF( INFO.EQ.0 ) THEN
                    392:             M = N
                    393:             GO TO 10
                    394:          END IF
                    395:          INFO = 0
                    396:       END IF
                    397: *
                    398: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
                    399: *
                    400:       IF( WANTZ ) THEN
                    401:          ORDER = 'B'
                    402:       ELSE
                    403:          ORDER = 'E'
                    404:       END IF
                    405: 
                    406:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
                    407:      $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
                    408:      $             IWORK( INDIWO ), INFO )
                    409: *
                    410:       IF( WANTZ ) THEN
                    411:          CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
                    412:      $                Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
                    413:      $                INFO )
                    414:       END IF
                    415: *
                    416: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    417: *
                    418:    10 CONTINUE
                    419:       IF( ISCALE.EQ.1 ) THEN
                    420:          IF( INFO.EQ.0 ) THEN
                    421:             IMAX = M
                    422:          ELSE
                    423:             IMAX = INFO - 1
                    424:          END IF
                    425:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    426:       END IF
                    427: *
                    428: *     If eigenvalues are not in order, then sort them, along with
                    429: *     eigenvectors.
                    430: *
                    431:       IF( WANTZ ) THEN
                    432:          DO 30 J = 1, M - 1
                    433:             I = 0
                    434:             TMP1 = W( J )
                    435:             DO 20 JJ = J + 1, M
                    436:                IF( W( JJ ).LT.TMP1 ) THEN
                    437:                   I = JJ
                    438:                   TMP1 = W( JJ )
                    439:                END IF
                    440:    20       CONTINUE
                    441: *
                    442:             IF( I.NE.0 ) THEN
                    443:                ITMP1 = IWORK( I )
                    444:                W( I ) = W( J )
                    445:                IWORK( I ) = IWORK( J )
                    446:                W( J ) = TMP1
                    447:                IWORK( J ) = ITMP1
                    448:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    449:             END IF
                    450:    30    CONTINUE
                    451:       END IF
                    452: *
                    453: *      Causes problems with tests 19 & 20:
                    454: *      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
                    455: *
                    456: *
                    457:       WORK( 1 ) = LWMIN
                    458:       IWORK( 1 ) = LIWMIN
                    459:       RETURN
                    460: *
                    461: *     End of DSTEVR
                    462: *
                    463:       END

CVSweb interface <joel.bertrand@systella.fr>