Annotation of rpl/lapack/lapack/dstevr.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
        !             2:      $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
        !             3:      $                   LIWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBZ, RANGE
        !            12:       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
        !            13:       DOUBLE PRECISION   ABSTOL, VL, VU
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            ISUPPZ( * ), IWORK( * )
        !            17:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  DSTEVR computes selected eigenvalues and, optionally, eigenvectors
        !            24: *  of a real symmetric tridiagonal matrix T.  Eigenvalues and
        !            25: *  eigenvectors can be selected by specifying either a range of values
        !            26: *  or a range of indices for the desired eigenvalues.
        !            27: *
        !            28: *  Whenever possible, DSTEVR calls DSTEMR to compute the
        !            29: *  eigenspectrum using Relatively Robust Representations.  DSTEMR
        !            30: *  computes eigenvalues by the dqds algorithm, while orthogonal
        !            31: *  eigenvectors are computed from various "good" L D L^T representations
        !            32: *  (also known as Relatively Robust Representations). Gram-Schmidt
        !            33: *  orthogonalization is avoided as far as possible. More specifically,
        !            34: *  the various steps of the algorithm are as follows. For the i-th
        !            35: *  unreduced block of T,
        !            36: *     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
        !            37: *          is a relatively robust representation,
        !            38: *     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
        !            39: *         relative accuracy by the dqds algorithm,
        !            40: *     (c) If there is a cluster of close eigenvalues, "choose" sigma_i
        !            41: *         close to the cluster, and go to step (a),
        !            42: *     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
        !            43: *         compute the corresponding eigenvector by forming a
        !            44: *         rank-revealing twisted factorization.
        !            45: *  The desired accuracy of the output can be specified by the input
        !            46: *  parameter ABSTOL.
        !            47: *
        !            48: *  For more details, see "A new O(n^2) algorithm for the symmetric
        !            49: *  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
        !            50: *  Computer Science Division Technical Report No. UCB//CSD-97-971,
        !            51: *  UC Berkeley, May 1997.
        !            52: *
        !            53: *
        !            54: *  Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
        !            55: *  on machines which conform to the ieee-754 floating point standard.
        !            56: *  DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
        !            57: *  when partial spectrum requests are made.
        !            58: *
        !            59: *  Normal execution of DSTEMR may create NaNs and infinities and
        !            60: *  hence may abort due to a floating point exception in environments
        !            61: *  which do not handle NaNs and infinities in the ieee standard default
        !            62: *  manner.
        !            63: *
        !            64: *  Arguments
        !            65: *  =========
        !            66: *
        !            67: *  JOBZ    (input) CHARACTER*1
        !            68: *          = 'N':  Compute eigenvalues only;
        !            69: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            70: *
        !            71: *  RANGE   (input) CHARACTER*1
        !            72: *          = 'A': all eigenvalues will be found.
        !            73: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            74: *                 will be found.
        !            75: *          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            76: ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
        !            77: ********** DSTEIN are called
        !            78: *
        !            79: *  N       (input) INTEGER
        !            80: *          The order of the matrix.  N >= 0.
        !            81: *
        !            82: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
        !            83: *          On entry, the n diagonal elements of the tridiagonal matrix
        !            84: *          A.
        !            85: *          On exit, D may be multiplied by a constant factor chosen
        !            86: *          to avoid over/underflow in computing the eigenvalues.
        !            87: *
        !            88: *  E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
        !            89: *          On entry, the (n-1) subdiagonal elements of the tridiagonal
        !            90: *          matrix A in elements 1 to N-1 of E.
        !            91: *          On exit, E may be multiplied by a constant factor chosen
        !            92: *          to avoid over/underflow in computing the eigenvalues.
        !            93: *
        !            94: *  VL      (input) DOUBLE PRECISION
        !            95: *  VU      (input) DOUBLE PRECISION
        !            96: *          If RANGE='V', the lower and upper bounds of the interval to
        !            97: *          be searched for eigenvalues. VL < VU.
        !            98: *          Not referenced if RANGE = 'A' or 'I'.
        !            99: *
        !           100: *  IL      (input) INTEGER
        !           101: *  IU      (input) INTEGER
        !           102: *          If RANGE='I', the indices (in ascending order) of the
        !           103: *          smallest and largest eigenvalues to be returned.
        !           104: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           105: *          Not referenced if RANGE = 'A' or 'V'.
        !           106: *
        !           107: *  ABSTOL  (input) DOUBLE PRECISION
        !           108: *          The absolute error tolerance for the eigenvalues.
        !           109: *          An approximate eigenvalue is accepted as converged
        !           110: *          when it is determined to lie in an interval [a,b]
        !           111: *          of width less than or equal to
        !           112: *
        !           113: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           114: *
        !           115: *          where EPS is the machine precision.  If ABSTOL is less than
        !           116: *          or equal to zero, then  EPS*|T|  will be used in its place,
        !           117: *          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           118: *          by reducing A to tridiagonal form.
        !           119: *
        !           120: *          See "Computing Small Singular Values of Bidiagonal Matrices
        !           121: *          with Guaranteed High Relative Accuracy," by Demmel and
        !           122: *          Kahan, LAPACK Working Note #3.
        !           123: *
        !           124: *          If high relative accuracy is important, set ABSTOL to
        !           125: *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
        !           126: *          eigenvalues are computed to high relative accuracy when
        !           127: *          possible in future releases.  The current code does not
        !           128: *          make any guarantees about high relative accuracy, but
        !           129: *          future releases will. See J. Barlow and J. Demmel,
        !           130: *          "Computing Accurate Eigensystems of Scaled Diagonally
        !           131: *          Dominant Matrices", LAPACK Working Note #7, for a discussion
        !           132: *          of which matrices define their eigenvalues to high relative
        !           133: *          accuracy.
        !           134: *
        !           135: *  M       (output) INTEGER
        !           136: *          The total number of eigenvalues found.  0 <= M <= N.
        !           137: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           138: *
        !           139: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !           140: *          The first M elements contain the selected eigenvalues in
        !           141: *          ascending order.
        !           142: *
        !           143: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
        !           144: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           145: *          contain the orthonormal eigenvectors of the matrix A
        !           146: *          corresponding to the selected eigenvalues, with the i-th
        !           147: *          column of Z holding the eigenvector associated with W(i).
        !           148: *          Note: the user must ensure that at least max(1,M) columns are
        !           149: *          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           150: *          is not known in advance and an upper bound must be used.
        !           151: *
        !           152: *  LDZ     (input) INTEGER
        !           153: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !           154: *          JOBZ = 'V', LDZ >= max(1,N).
        !           155: *
        !           156: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
        !           157: *          The support of the eigenvectors in Z, i.e., the indices
        !           158: *          indicating the nonzero elements in Z. The i-th eigenvector
        !           159: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
        !           160: *          ISUPPZ( 2*i ).
        !           161: ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
        !           162: *
        !           163: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           164: *          On exit, if INFO = 0, WORK(1) returns the optimal (and
        !           165: *          minimal) LWORK.
        !           166: *
        !           167: *  LWORK   (input) INTEGER
        !           168: *          The dimension of the array WORK.  LWORK >= max(1,20*N).
        !           169: *
        !           170: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           171: *          only calculates the optimal sizes of the WORK and IWORK
        !           172: *          arrays, returns these values as the first entries of the WORK
        !           173: *          and IWORK arrays, and no error message related to LWORK or
        !           174: *          LIWORK is issued by XERBLA.
        !           175: *
        !           176: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           177: *          On exit, if INFO = 0, IWORK(1) returns the optimal (and
        !           178: *          minimal) LIWORK.
        !           179: *
        !           180: *  LIWORK  (input) INTEGER
        !           181: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
        !           182: *
        !           183: *          If LIWORK = -1, then a workspace query is assumed; the
        !           184: *          routine only calculates the optimal sizes of the WORK and
        !           185: *          IWORK arrays, returns these values as the first entries of
        !           186: *          the WORK and IWORK arrays, and no error message related to
        !           187: *          LWORK or LIWORK is issued by XERBLA.
        !           188: *
        !           189: *  INFO    (output) INTEGER
        !           190: *          = 0:  successful exit
        !           191: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           192: *          > 0:  Internal error
        !           193: *
        !           194: *  Further Details
        !           195: *  ===============
        !           196: *
        !           197: *  Based on contributions by
        !           198: *     Inderjit Dhillon, IBM Almaden, USA
        !           199: *     Osni Marques, LBNL/NERSC, USA
        !           200: *     Ken Stanley, Computer Science Division, University of
        !           201: *       California at Berkeley, USA
        !           202: *
        !           203: *  =====================================================================
        !           204: *
        !           205: *     .. Parameters ..
        !           206:       DOUBLE PRECISION   ZERO, ONE, TWO
        !           207:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
        !           208: *     ..
        !           209: *     .. Local Scalars ..
        !           210:       LOGICAL            ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
        !           211:      $                   TRYRAC
        !           212:       CHARACTER          ORDER
        !           213:       INTEGER            I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
        !           214:      $                   INDIWO, ISCALE, ITMP1, J, JJ, LIWMIN, LWMIN,
        !           215:      $                   NSPLIT
        !           216:       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
        !           217:      $                   TMP1, TNRM, VLL, VUU
        !           218: *     ..
        !           219: *     .. External Functions ..
        !           220:       LOGICAL            LSAME
        !           221:       INTEGER            ILAENV
        !           222:       DOUBLE PRECISION   DLAMCH, DLANST
        !           223:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
        !           224: *     ..
        !           225: *     .. External Subroutines ..
        !           226:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEMR, DSTEIN, DSTERF,
        !           227:      $                   DSWAP, XERBLA
        !           228: *     ..
        !           229: *     .. Intrinsic Functions ..
        !           230:       INTRINSIC          MAX, MIN, SQRT
        !           231: *     ..
        !           232: *     .. Executable Statements ..
        !           233: *
        !           234: *
        !           235: *     Test the input parameters.
        !           236: *
        !           237:       IEEEOK = ILAENV( 10, 'DSTEVR', 'N', 1, 2, 3, 4 )
        !           238: *
        !           239:       WANTZ = LSAME( JOBZ, 'V' )
        !           240:       ALLEIG = LSAME( RANGE, 'A' )
        !           241:       VALEIG = LSAME( RANGE, 'V' )
        !           242:       INDEIG = LSAME( RANGE, 'I' )
        !           243: *
        !           244:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
        !           245:       LWMIN = MAX( 1, 20*N )
        !           246:       LIWMIN = MAX( 1, 10*N )
        !           247: *
        !           248: *
        !           249:       INFO = 0
        !           250:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           251:          INFO = -1
        !           252:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           253:          INFO = -2
        !           254:       ELSE IF( N.LT.0 ) THEN
        !           255:          INFO = -3
        !           256:       ELSE
        !           257:          IF( VALEIG ) THEN
        !           258:             IF( N.GT.0 .AND. VU.LE.VL )
        !           259:      $         INFO = -7
        !           260:          ELSE IF( INDEIG ) THEN
        !           261:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
        !           262:                INFO = -8
        !           263:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
        !           264:                INFO = -9
        !           265:             END IF
        !           266:          END IF
        !           267:       END IF
        !           268:       IF( INFO.EQ.0 ) THEN
        !           269:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           270:             INFO = -14
        !           271:          END IF
        !           272:       END IF
        !           273: *
        !           274:       IF( INFO.EQ.0 ) THEN
        !           275:          WORK( 1 ) = LWMIN
        !           276:          IWORK( 1 ) = LIWMIN
        !           277: *
        !           278:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           279:             INFO = -17
        !           280:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           281:             INFO = -19
        !           282:          END IF
        !           283:       END IF
        !           284: *
        !           285:       IF( INFO.NE.0 ) THEN
        !           286:          CALL XERBLA( 'DSTEVR', -INFO )
        !           287:          RETURN
        !           288:       ELSE IF( LQUERY ) THEN
        !           289:          RETURN
        !           290:       END IF
        !           291: *
        !           292: *     Quick return if possible
        !           293: *
        !           294:       M = 0
        !           295:       IF( N.EQ.0 )
        !           296:      $   RETURN
        !           297: *
        !           298:       IF( N.EQ.1 ) THEN
        !           299:          IF( ALLEIG .OR. INDEIG ) THEN
        !           300:             M = 1
        !           301:             W( 1 ) = D( 1 )
        !           302:          ELSE
        !           303:             IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
        !           304:                M = 1
        !           305:                W( 1 ) = D( 1 )
        !           306:             END IF
        !           307:          END IF
        !           308:          IF( WANTZ )
        !           309:      $      Z( 1, 1 ) = ONE
        !           310:          RETURN
        !           311:       END IF
        !           312: *
        !           313: *     Get machine constants.
        !           314: *
        !           315:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           316:       EPS = DLAMCH( 'Precision' )
        !           317:       SMLNUM = SAFMIN / EPS
        !           318:       BIGNUM = ONE / SMLNUM
        !           319:       RMIN = SQRT( SMLNUM )
        !           320:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
        !           321: *
        !           322: *
        !           323: *     Scale matrix to allowable range, if necessary.
        !           324: *
        !           325:       ISCALE = 0
        !           326:       VLL = VL
        !           327:       VUU = VU
        !           328: *
        !           329:       TNRM = DLANST( 'M', N, D, E )
        !           330:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
        !           331:          ISCALE = 1
        !           332:          SIGMA = RMIN / TNRM
        !           333:       ELSE IF( TNRM.GT.RMAX ) THEN
        !           334:          ISCALE = 1
        !           335:          SIGMA = RMAX / TNRM
        !           336:       END IF
        !           337:       IF( ISCALE.EQ.1 ) THEN
        !           338:          CALL DSCAL( N, SIGMA, D, 1 )
        !           339:          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
        !           340:          IF( VALEIG ) THEN
        !           341:             VLL = VL*SIGMA
        !           342:             VUU = VU*SIGMA
        !           343:          END IF
        !           344:       END IF
        !           345: 
        !           346: *     Initialize indices into workspaces.  Note: These indices are used only
        !           347: *     if DSTERF or DSTEMR fail.
        !           348: 
        !           349: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
        !           350: *     stores the block indices of each of the M<=N eigenvalues.
        !           351:       INDIBL = 1
        !           352: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
        !           353: *     stores the starting and finishing indices of each block.
        !           354:       INDISP = INDIBL + N
        !           355: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
        !           356: *     that corresponding to eigenvectors that fail to converge in
        !           357: *     DSTEIN.  This information is discarded; if any fail, the driver
        !           358: *     returns INFO > 0.
        !           359:       INDIFL = INDISP + N
        !           360: *     INDIWO is the offset of the remaining integer workspace.
        !           361:       INDIWO = INDISP + N
        !           362: *
        !           363: *     If all eigenvalues are desired, then
        !           364: *     call DSTERF or DSTEMR.  If this fails for some eigenvalue, then
        !           365: *     try DSTEBZ.
        !           366: *
        !           367: *
        !           368:       TEST = .FALSE.
        !           369:       IF( INDEIG ) THEN
        !           370:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
        !           371:             TEST = .TRUE.
        !           372:          END IF
        !           373:       END IF
        !           374:       IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
        !           375:          CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
        !           376:          IF( .NOT.WANTZ ) THEN
        !           377:             CALL DCOPY( N, D, 1, W, 1 )
        !           378:             CALL DSTERF( N, W, WORK, INFO )
        !           379:          ELSE
        !           380:             CALL DCOPY( N, D, 1, WORK( N+1 ), 1 )
        !           381:             IF (ABSTOL .LE. TWO*N*EPS) THEN
        !           382:                TRYRAC = .TRUE.
        !           383:             ELSE
        !           384:                TRYRAC = .FALSE.
        !           385:             END IF
        !           386:             CALL DSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
        !           387:      $                   IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
        !           388:      $                   WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
        !           389: *
        !           390:          END IF
        !           391:          IF( INFO.EQ.0 ) THEN
        !           392:             M = N
        !           393:             GO TO 10
        !           394:          END IF
        !           395:          INFO = 0
        !           396:       END IF
        !           397: *
        !           398: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
        !           399: *
        !           400:       IF( WANTZ ) THEN
        !           401:          ORDER = 'B'
        !           402:       ELSE
        !           403:          ORDER = 'E'
        !           404:       END IF
        !           405: 
        !           406:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
        !           407:      $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
        !           408:      $             IWORK( INDIWO ), INFO )
        !           409: *
        !           410:       IF( WANTZ ) THEN
        !           411:          CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
        !           412:      $                Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
        !           413:      $                INFO )
        !           414:       END IF
        !           415: *
        !           416: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           417: *
        !           418:    10 CONTINUE
        !           419:       IF( ISCALE.EQ.1 ) THEN
        !           420:          IF( INFO.EQ.0 ) THEN
        !           421:             IMAX = M
        !           422:          ELSE
        !           423:             IMAX = INFO - 1
        !           424:          END IF
        !           425:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           426:       END IF
        !           427: *
        !           428: *     If eigenvalues are not in order, then sort them, along with
        !           429: *     eigenvectors.
        !           430: *
        !           431:       IF( WANTZ ) THEN
        !           432:          DO 30 J = 1, M - 1
        !           433:             I = 0
        !           434:             TMP1 = W( J )
        !           435:             DO 20 JJ = J + 1, M
        !           436:                IF( W( JJ ).LT.TMP1 ) THEN
        !           437:                   I = JJ
        !           438:                   TMP1 = W( JJ )
        !           439:                END IF
        !           440:    20       CONTINUE
        !           441: *
        !           442:             IF( I.NE.0 ) THEN
        !           443:                ITMP1 = IWORK( I )
        !           444:                W( I ) = W( J )
        !           445:                IWORK( I ) = IWORK( J )
        !           446:                W( J ) = TMP1
        !           447:                IWORK( J ) = ITMP1
        !           448:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           449:             END IF
        !           450:    30    CONTINUE
        !           451:       END IF
        !           452: *
        !           453: *      Causes problems with tests 19 & 20:
        !           454: *      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
        !           455: *
        !           456: *
        !           457:       WORK( 1 ) = LWMIN
        !           458:       IWORK( 1 ) = LIWMIN
        !           459:       RETURN
        !           460: *
        !           461: *     End of DSTEVR
        !           462: *
        !           463:       END

CVSweb interface <joel.bertrand@systella.fr>