Annotation of rpl/lapack/lapack/dstevd.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
                      2:      $                   LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ
                     11:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
                     22: *  real symmetric tridiagonal matrix. If eigenvectors are desired, it
                     23: *  uses a divide and conquer algorithm.
                     24: *
                     25: *  The divide and conquer algorithm makes very mild assumptions about
                     26: *  floating point arithmetic. It will work on machines with a guard
                     27: *  digit in add/subtract, or on those binary machines without guard
                     28: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     29: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     30: *  without guard digits, but we know of none.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  JOBZ    (input) CHARACTER*1
                     36: *          = 'N':  Compute eigenvalues only;
                     37: *          = 'V':  Compute eigenvalues and eigenvectors.
                     38: *
                     39: *  N       (input) INTEGER
                     40: *          The order of the matrix.  N >= 0.
                     41: *
                     42: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                     43: *          On entry, the n diagonal elements of the tridiagonal matrix
                     44: *          A.
                     45: *          On exit, if INFO = 0, the eigenvalues in ascending order.
                     46: *
                     47: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
                     48: *          On entry, the (n-1) subdiagonal elements of the tridiagonal
                     49: *          matrix A, stored in elements 1 to N-1 of E.
                     50: *          On exit, the contents of E are destroyed.
                     51: *
                     52: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
                     53: *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     54: *          eigenvectors of the matrix A, with the i-th column of Z
                     55: *          holding the eigenvector associated with D(i).
                     56: *          If JOBZ = 'N', then Z is not referenced.
                     57: *
                     58: *  LDZ     (input) INTEGER
                     59: *          The leading dimension of the array Z.  LDZ >= 1, and if
                     60: *          JOBZ = 'V', LDZ >= max(1,N).
                     61: *
                     62: *  WORK    (workspace/output) DOUBLE PRECISION array,
                     63: *                                         dimension (LWORK)
                     64: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     65: *
                     66: *  LWORK   (input) INTEGER
                     67: *          The dimension of the array WORK.
                     68: *          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1.
                     69: *          If JOBZ  = 'V' and N > 1 then LWORK must be at least
                     70: *                         ( 1 + 4*N + N**2 ).
                     71: *
                     72: *          If LWORK = -1, then a workspace query is assumed; the routine
                     73: *          only calculates the optimal sizes of the WORK and IWORK
                     74: *          arrays, returns these values as the first entries of the WORK
                     75: *          and IWORK arrays, and no error message related to LWORK or
                     76: *          LIWORK is issued by XERBLA.
                     77: *
                     78: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                     79: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                     80: *
                     81: *  LIWORK  (input) INTEGER
                     82: *          The dimension of the array IWORK.
                     83: *          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1.
                     84: *          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N.
                     85: *
                     86: *          If LIWORK = -1, then a workspace query is assumed; the
                     87: *          routine only calculates the optimal sizes of the WORK and
                     88: *          IWORK arrays, returns these values as the first entries of
                     89: *          the WORK and IWORK arrays, and no error message related to
                     90: *          LWORK or LIWORK is issued by XERBLA.
                     91: *
                     92: *  INFO    (output) INTEGER
                     93: *          = 0:  successful exit
                     94: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     95: *          > 0:  if INFO = i, the algorithm failed to converge; i
                     96: *                off-diagonal elements of E did not converge to zero.
                     97: *
                     98: *  =====================================================================
                     99: *
                    100: *     .. Parameters ..
                    101:       DOUBLE PRECISION   ZERO, ONE
                    102:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    103: *     ..
                    104: *     .. Local Scalars ..
                    105:       LOGICAL            LQUERY, WANTZ
                    106:       INTEGER            ISCALE, LIWMIN, LWMIN
                    107:       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
                    108:      $                   TNRM
                    109: *     ..
                    110: *     .. External Functions ..
                    111:       LOGICAL            LSAME
                    112:       DOUBLE PRECISION   DLAMCH, DLANST
                    113:       EXTERNAL           LSAME, DLAMCH, DLANST
                    114: *     ..
                    115: *     .. External Subroutines ..
                    116:       EXTERNAL           DSCAL, DSTEDC, DSTERF, XERBLA
                    117: *     ..
                    118: *     .. Intrinsic Functions ..
                    119:       INTRINSIC          SQRT
                    120: *     ..
                    121: *     .. Executable Statements ..
                    122: *
                    123: *     Test the input parameters.
                    124: *
                    125:       WANTZ = LSAME( JOBZ, 'V' )
                    126:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    127: *
                    128:       INFO = 0
                    129:       LIWMIN = 1
                    130:       LWMIN = 1
                    131:       IF( N.GT.1 .AND. WANTZ ) THEN
                    132:          LWMIN = 1 + 4*N + N**2
                    133:          LIWMIN = 3 + 5*N
                    134:       END IF
                    135: *
                    136:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    137:          INFO = -1
                    138:       ELSE IF( N.LT.0 ) THEN
                    139:          INFO = -2
                    140:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    141:          INFO = -6
                    142:       END IF
                    143: *
                    144:       IF( INFO.EQ.0 ) THEN
                    145:          WORK( 1 ) = LWMIN
                    146:          IWORK( 1 ) = LIWMIN
                    147: *
                    148:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    149:             INFO = -8
                    150:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    151:             INFO = -10
                    152:          END IF
                    153:       END IF
                    154: *
                    155:       IF( INFO.NE.0 ) THEN
                    156:          CALL XERBLA( 'DSTEVD', -INFO )
                    157:          RETURN
                    158:       ELSE IF( LQUERY ) THEN
                    159:          RETURN
                    160:       END IF
                    161: *
                    162: *     Quick return if possible
                    163: *
                    164:       IF( N.EQ.0 )
                    165:      $   RETURN
                    166: *
                    167:       IF( N.EQ.1 ) THEN
                    168:          IF( WANTZ )
                    169:      $      Z( 1, 1 ) = ONE
                    170:          RETURN
                    171:       END IF
                    172: *
                    173: *     Get machine constants.
                    174: *
                    175:       SAFMIN = DLAMCH( 'Safe minimum' )
                    176:       EPS = DLAMCH( 'Precision' )
                    177:       SMLNUM = SAFMIN / EPS
                    178:       BIGNUM = ONE / SMLNUM
                    179:       RMIN = SQRT( SMLNUM )
                    180:       RMAX = SQRT( BIGNUM )
                    181: *
                    182: *     Scale matrix to allowable range, if necessary.
                    183: *
                    184:       ISCALE = 0
                    185:       TNRM = DLANST( 'M', N, D, E )
                    186:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
                    187:          ISCALE = 1
                    188:          SIGMA = RMIN / TNRM
                    189:       ELSE IF( TNRM.GT.RMAX ) THEN
                    190:          ISCALE = 1
                    191:          SIGMA = RMAX / TNRM
                    192:       END IF
                    193:       IF( ISCALE.EQ.1 ) THEN
                    194:          CALL DSCAL( N, SIGMA, D, 1 )
                    195:          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
                    196:       END IF
                    197: *
                    198: *     For eigenvalues only, call DSTERF.  For eigenvalues and
                    199: *     eigenvectors, call DSTEDC.
                    200: *
                    201:       IF( .NOT.WANTZ ) THEN
                    202:          CALL DSTERF( N, D, E, INFO )
                    203:       ELSE
                    204:          CALL DSTEDC( 'I', N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
                    205:      $                INFO )
                    206:       END IF
                    207: *
                    208: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    209: *
                    210:       IF( ISCALE.EQ.1 )
                    211:      $   CALL DSCAL( N, ONE / SIGMA, D, 1 )
                    212: *
                    213:       WORK( 1 ) = LWMIN
                    214:       IWORK( 1 ) = LIWMIN
                    215: *
                    216:       RETURN
                    217: *
                    218: *     End of DSTEVD
                    219: *
                    220:       END

CVSweb interface <joel.bertrand@systella.fr>