Annotation of rpl/lapack/lapack/dstevd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
        !             2:      $                   LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ
        !            11:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
        !            22: *  real symmetric tridiagonal matrix. If eigenvectors are desired, it
        !            23: *  uses a divide and conquer algorithm.
        !            24: *
        !            25: *  The divide and conquer algorithm makes very mild assumptions about
        !            26: *  floating point arithmetic. It will work on machines with a guard
        !            27: *  digit in add/subtract, or on those binary machines without guard
        !            28: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            29: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            30: *  without guard digits, but we know of none.
        !            31: *
        !            32: *  Arguments
        !            33: *  =========
        !            34: *
        !            35: *  JOBZ    (input) CHARACTER*1
        !            36: *          = 'N':  Compute eigenvalues only;
        !            37: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            38: *
        !            39: *  N       (input) INTEGER
        !            40: *          The order of the matrix.  N >= 0.
        !            41: *
        !            42: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
        !            43: *          On entry, the n diagonal elements of the tridiagonal matrix
        !            44: *          A.
        !            45: *          On exit, if INFO = 0, the eigenvalues in ascending order.
        !            46: *
        !            47: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
        !            48: *          On entry, the (n-1) subdiagonal elements of the tridiagonal
        !            49: *          matrix A, stored in elements 1 to N-1 of E.
        !            50: *          On exit, the contents of E are destroyed.
        !            51: *
        !            52: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
        !            53: *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
        !            54: *          eigenvectors of the matrix A, with the i-th column of Z
        !            55: *          holding the eigenvector associated with D(i).
        !            56: *          If JOBZ = 'N', then Z is not referenced.
        !            57: *
        !            58: *  LDZ     (input) INTEGER
        !            59: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !            60: *          JOBZ = 'V', LDZ >= max(1,N).
        !            61: *
        !            62: *  WORK    (workspace/output) DOUBLE PRECISION array,
        !            63: *                                         dimension (LWORK)
        !            64: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            65: *
        !            66: *  LWORK   (input) INTEGER
        !            67: *          The dimension of the array WORK.
        !            68: *          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1.
        !            69: *          If JOBZ  = 'V' and N > 1 then LWORK must be at least
        !            70: *                         ( 1 + 4*N + N**2 ).
        !            71: *
        !            72: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            73: *          only calculates the optimal sizes of the WORK and IWORK
        !            74: *          arrays, returns these values as the first entries of the WORK
        !            75: *          and IWORK arrays, and no error message related to LWORK or
        !            76: *          LIWORK is issued by XERBLA.
        !            77: *
        !            78: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !            79: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !            80: *
        !            81: *  LIWORK  (input) INTEGER
        !            82: *          The dimension of the array IWORK.
        !            83: *          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1.
        !            84: *          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N.
        !            85: *
        !            86: *          If LIWORK = -1, then a workspace query is assumed; the
        !            87: *          routine only calculates the optimal sizes of the WORK and
        !            88: *          IWORK arrays, returns these values as the first entries of
        !            89: *          the WORK and IWORK arrays, and no error message related to
        !            90: *          LWORK or LIWORK is issued by XERBLA.
        !            91: *
        !            92: *  INFO    (output) INTEGER
        !            93: *          = 0:  successful exit
        !            94: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            95: *          > 0:  if INFO = i, the algorithm failed to converge; i
        !            96: *                off-diagonal elements of E did not converge to zero.
        !            97: *
        !            98: *  =====================================================================
        !            99: *
        !           100: *     .. Parameters ..
        !           101:       DOUBLE PRECISION   ZERO, ONE
        !           102:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           103: *     ..
        !           104: *     .. Local Scalars ..
        !           105:       LOGICAL            LQUERY, WANTZ
        !           106:       INTEGER            ISCALE, LIWMIN, LWMIN
        !           107:       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
        !           108:      $                   TNRM
        !           109: *     ..
        !           110: *     .. External Functions ..
        !           111:       LOGICAL            LSAME
        !           112:       DOUBLE PRECISION   DLAMCH, DLANST
        !           113:       EXTERNAL           LSAME, DLAMCH, DLANST
        !           114: *     ..
        !           115: *     .. External Subroutines ..
        !           116:       EXTERNAL           DSCAL, DSTEDC, DSTERF, XERBLA
        !           117: *     ..
        !           118: *     .. Intrinsic Functions ..
        !           119:       INTRINSIC          SQRT
        !           120: *     ..
        !           121: *     .. Executable Statements ..
        !           122: *
        !           123: *     Test the input parameters.
        !           124: *
        !           125:       WANTZ = LSAME( JOBZ, 'V' )
        !           126:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           127: *
        !           128:       INFO = 0
        !           129:       LIWMIN = 1
        !           130:       LWMIN = 1
        !           131:       IF( N.GT.1 .AND. WANTZ ) THEN
        !           132:          LWMIN = 1 + 4*N + N**2
        !           133:          LIWMIN = 3 + 5*N
        !           134:       END IF
        !           135: *
        !           136:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           137:          INFO = -1
        !           138:       ELSE IF( N.LT.0 ) THEN
        !           139:          INFO = -2
        !           140:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           141:          INFO = -6
        !           142:       END IF
        !           143: *
        !           144:       IF( INFO.EQ.0 ) THEN
        !           145:          WORK( 1 ) = LWMIN
        !           146:          IWORK( 1 ) = LIWMIN
        !           147: *
        !           148:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           149:             INFO = -8
        !           150:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           151:             INFO = -10
        !           152:          END IF
        !           153:       END IF
        !           154: *
        !           155:       IF( INFO.NE.0 ) THEN
        !           156:          CALL XERBLA( 'DSTEVD', -INFO )
        !           157:          RETURN
        !           158:       ELSE IF( LQUERY ) THEN
        !           159:          RETURN
        !           160:       END IF
        !           161: *
        !           162: *     Quick return if possible
        !           163: *
        !           164:       IF( N.EQ.0 )
        !           165:      $   RETURN
        !           166: *
        !           167:       IF( N.EQ.1 ) THEN
        !           168:          IF( WANTZ )
        !           169:      $      Z( 1, 1 ) = ONE
        !           170:          RETURN
        !           171:       END IF
        !           172: *
        !           173: *     Get machine constants.
        !           174: *
        !           175:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           176:       EPS = DLAMCH( 'Precision' )
        !           177:       SMLNUM = SAFMIN / EPS
        !           178:       BIGNUM = ONE / SMLNUM
        !           179:       RMIN = SQRT( SMLNUM )
        !           180:       RMAX = SQRT( BIGNUM )
        !           181: *
        !           182: *     Scale matrix to allowable range, if necessary.
        !           183: *
        !           184:       ISCALE = 0
        !           185:       TNRM = DLANST( 'M', N, D, E )
        !           186:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
        !           187:          ISCALE = 1
        !           188:          SIGMA = RMIN / TNRM
        !           189:       ELSE IF( TNRM.GT.RMAX ) THEN
        !           190:          ISCALE = 1
        !           191:          SIGMA = RMAX / TNRM
        !           192:       END IF
        !           193:       IF( ISCALE.EQ.1 ) THEN
        !           194:          CALL DSCAL( N, SIGMA, D, 1 )
        !           195:          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
        !           196:       END IF
        !           197: *
        !           198: *     For eigenvalues only, call DSTERF.  For eigenvalues and
        !           199: *     eigenvectors, call DSTEDC.
        !           200: *
        !           201:       IF( .NOT.WANTZ ) THEN
        !           202:          CALL DSTERF( N, D, E, INFO )
        !           203:       ELSE
        !           204:          CALL DSTEDC( 'I', N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
        !           205:      $                INFO )
        !           206:       END IF
        !           207: *
        !           208: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           209: *
        !           210:       IF( ISCALE.EQ.1 )
        !           211:      $   CALL DSCAL( N, ONE / SIGMA, D, 1 )
        !           212: *
        !           213:       WORK( 1 ) = LWMIN
        !           214:       IWORK( 1 ) = LIWMIN
        !           215: *
        !           216:       RETURN
        !           217: *
        !           218: *     End of DSTEVD
        !           219: *
        !           220:       END

CVSweb interface <joel.bertrand@systella.fr>