Diff for /rpl/lapack/lapack/dstevd.f between versions 1.7 and 1.8

version 1.7, 2010/12/21 13:53:38 version 1.8, 2011/11/21 20:43:04
Line 1 Line 1
   *> \brief <b> DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at 
   *            http://www.netlib.org/lapack/explore-html/ 
   *
   *> \htmlonly
   *> Download DSTEVD + dependencies 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevd.f"> 
   *> [TGZ]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevd.f"> 
   *> [ZIP]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevd.f"> 
   *> [TXT]</a>
   *> \endhtmlonly 
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
   *                          LIWORK, INFO )
   * 
   *       .. Scalar Arguments ..
   *       CHARACTER          JOBZ
   *       INTEGER            INFO, LDZ, LIWORK, LWORK, N
   *       ..
   *       .. Array Arguments ..
   *       INTEGER            IWORK( * )
   *       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
   *       ..
   *  
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
   *> real symmetric tridiagonal matrix. If eigenvectors are desired, it
   *> uses a divide and conquer algorithm.
   *>
   *> The divide and conquer algorithm makes very mild assumptions about
   *> floating point arithmetic. It will work on machines with a guard
   *> digit in add/subtract, or on those binary machines without guard
   *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   *> without guard digits, but we know of none.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] JOBZ
   *> \verbatim
   *>          JOBZ is CHARACTER*1
   *>          = 'N':  Compute eigenvalues only;
   *>          = 'V':  Compute eigenvalues and eigenvectors.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The order of the matrix.  N >= 0.
   *> \endverbatim
   *>
   *> \param[in,out] D
   *> \verbatim
   *>          D is DOUBLE PRECISION array, dimension (N)
   *>          On entry, the n diagonal elements of the tridiagonal matrix
   *>          A.
   *>          On exit, if INFO = 0, the eigenvalues in ascending order.
   *> \endverbatim
   *>
   *> \param[in,out] E
   *> \verbatim
   *>          E is DOUBLE PRECISION array, dimension (N-1)
   *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
   *>          matrix A, stored in elements 1 to N-1 of E.
   *>          On exit, the contents of E are destroyed.
   *> \endverbatim
   *>
   *> \param[out] Z
   *> \verbatim
   *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
   *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
   *>          eigenvectors of the matrix A, with the i-th column of Z
   *>          holding the eigenvector associated with D(i).
   *>          If JOBZ = 'N', then Z is not referenced.
   *> \endverbatim
   *>
   *> \param[in] LDZ
   *> \verbatim
   *>          LDZ is INTEGER
   *>          The leading dimension of the array Z.  LDZ >= 1, and if
   *>          JOBZ = 'V', LDZ >= max(1,N).
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is DOUBLE PRECISION array,
   *>                                         dimension (LWORK)
   *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   *> \endverbatim
   *>
   *> \param[in] LWORK
   *> \verbatim
   *>          LWORK is INTEGER
   *>          The dimension of the array WORK.
   *>          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1.
   *>          If JOBZ  = 'V' and N > 1 then LWORK must be at least
   *>                         ( 1 + 4*N + N**2 ).
   *>
   *>          If LWORK = -1, then a workspace query is assumed; the routine
   *>          only calculates the optimal sizes of the WORK and IWORK
   *>          arrays, returns these values as the first entries of the WORK
   *>          and IWORK arrays, and no error message related to LWORK or
   *>          LIWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] IWORK
   *> \verbatim
   *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
   *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
   *> \endverbatim
   *>
   *> \param[in] LIWORK
   *> \verbatim
   *>          LIWORK is INTEGER
   *>          The dimension of the array IWORK.
   *>          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1.
   *>          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N.
   *>
   *>          If LIWORK = -1, then a workspace query is assumed; the
   *>          routine only calculates the optimal sizes of the WORK and
   *>          IWORK arrays, returns these values as the first entries of
   *>          the WORK and IWORK arrays, and no error message related to
   *>          LWORK or LIWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>          = 0:  successful exit
   *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   *>          > 0:  if INFO = i, the algorithm failed to converge; i
   *>                off-diagonal elements of E did not converge to zero.
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee 
   *> \author Univ. of California Berkeley 
   *> \author Univ. of Colorado Denver 
   *> \author NAG Ltd. 
   *
   *> \date November 2011
   *
   *> \ingroup doubleOTHEReigen
   *
   *  =====================================================================
       SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,        SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
      $                   LIWORK, INFO )       $                   LIWORK, INFO )
 *  *
 *  -- LAPACK driver routine (version 3.2) --  *  -- LAPACK driver routine (version 3.4.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     November 2006  *     November 2011
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       CHARACTER          JOBZ        CHARACTER          JOBZ
Line 15 Line 177
       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )        DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  DSTEVD computes all eigenvalues and, optionally, eigenvectors of a  
 *  real symmetric tridiagonal matrix. If eigenvectors are desired, it  
 *  uses a divide and conquer algorithm.  
 *  
 *  The divide and conquer algorithm makes very mild assumptions about  
 *  floating point arithmetic. It will work on machines with a guard  
 *  digit in add/subtract, or on those binary machines without guard  
 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or  
 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines  
 *  without guard digits, but we know of none.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  JOBZ    (input) CHARACTER*1  
 *          = 'N':  Compute eigenvalues only;  
 *          = 'V':  Compute eigenvalues and eigenvectors.  
 *  
 *  N       (input) INTEGER  
 *          The order of the matrix.  N >= 0.  
 *  
 *  D       (input/output) DOUBLE PRECISION array, dimension (N)  
 *          On entry, the n diagonal elements of the tridiagonal matrix  
 *          A.  
 *          On exit, if INFO = 0, the eigenvalues in ascending order.  
 *  
 *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)  
 *          On entry, the (n-1) subdiagonal elements of the tridiagonal  
 *          matrix A, stored in elements 1 to N-1 of E.  
 *          On exit, the contents of E are destroyed.  
 *  
 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)  
 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal  
 *          eigenvectors of the matrix A, with the i-th column of Z  
 *          holding the eigenvector associated with D(i).  
 *          If JOBZ = 'N', then Z is not referenced.  
 *  
 *  LDZ     (input) INTEGER  
 *          The leading dimension of the array Z.  LDZ >= 1, and if  
 *          JOBZ = 'V', LDZ >= max(1,N).  
 *  
 *  WORK    (workspace/output) DOUBLE PRECISION array,  
 *                                         dimension (LWORK)  
 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.  
 *  
 *  LWORK   (input) INTEGER  
 *          The dimension of the array WORK.  
 *          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1.  
 *          If JOBZ  = 'V' and N > 1 then LWORK must be at least  
 *                         ( 1 + 4*N + N**2 ).  
 *  
 *          If LWORK = -1, then a workspace query is assumed; the routine  
 *          only calculates the optimal sizes of the WORK and IWORK  
 *          arrays, returns these values as the first entries of the WORK  
 *          and IWORK arrays, and no error message related to LWORK or  
 *          LIWORK is issued by XERBLA.  
 *  
 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))  
 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.  
 *  
 *  LIWORK  (input) INTEGER  
 *          The dimension of the array IWORK.  
 *          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1.  
 *          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N.  
 *  
 *          If LIWORK = -1, then a workspace query is assumed; the  
 *          routine only calculates the optimal sizes of the WORK and  
 *          IWORK arrays, returns these values as the first entries of  
 *          the WORK and IWORK arrays, and no error message related to  
 *          LWORK or LIWORK is issued by XERBLA.  
 *  
 *  INFO    (output) INTEGER  
 *          = 0:  successful exit  
 *          < 0:  if INFO = -i, the i-th argument had an illegal value  
 *          > 0:  if INFO = i, the algorithm failed to converge; i  
 *                off-diagonal elements of E did not converge to zero.  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Parameters ..  *     .. Parameters ..

Removed from v.1.7  
changed lines
  Added in v.1.8


CVSweb interface <joel.bertrand@systella.fr>