File:  [local] / rpl / lapack / lapack / dsterf.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:11 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DSTERF( N, D, E, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.3.1) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *  -- April 2011                                                      --
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       DOUBLE PRECISION   D( * ), E( * )
   13: *     ..
   14: *
   15: *  Purpose
   16: *  =======
   17: *
   18: *  DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
   19: *  using the Pal-Walker-Kahan variant of the QL or QR algorithm.
   20: *
   21: *  Arguments
   22: *  =========
   23: *
   24: *  N       (input) INTEGER
   25: *          The order of the matrix.  N >= 0.
   26: *
   27: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   28: *          On entry, the n diagonal elements of the tridiagonal matrix.
   29: *          On exit, if INFO = 0, the eigenvalues in ascending order.
   30: *
   31: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
   32: *          On entry, the (n-1) subdiagonal elements of the tridiagonal
   33: *          matrix.
   34: *          On exit, E has been destroyed.
   35: *
   36: *  INFO    (output) INTEGER
   37: *          = 0:  successful exit
   38: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   39: *          > 0:  the algorithm failed to find all of the eigenvalues in
   40: *                a total of 30*N iterations; if INFO = i, then i
   41: *                elements of E have not converged to zero.
   42: *
   43: *  =====================================================================
   44: *
   45: *     .. Parameters ..
   46:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE
   47:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
   48:      $                   THREE = 3.0D0 )
   49:       INTEGER            MAXIT
   50:       PARAMETER          ( MAXIT = 30 )
   51: *     ..
   52: *     .. Local Scalars ..
   53:       INTEGER            I, ISCALE, JTOT, L, L1, LEND, LENDSV, LSV, M,
   54:      $                   NMAXIT
   55:       DOUBLE PRECISION   ALPHA, ANORM, BB, C, EPS, EPS2, GAMMA, OLDC,
   56:      $                   OLDGAM, P, R, RT1, RT2, RTE, S, SAFMAX, SAFMIN,
   57:      $                   SIGMA, SSFMAX, SSFMIN, RMAX
   58: *     ..
   59: *     .. External Functions ..
   60:       DOUBLE PRECISION   DLAMCH, DLANST, DLAPY2
   61:       EXTERNAL           DLAMCH, DLANST, DLAPY2
   62: *     ..
   63: *     .. External Subroutines ..
   64:       EXTERNAL           DLAE2, DLASCL, DLASRT, XERBLA
   65: *     ..
   66: *     .. Intrinsic Functions ..
   67:       INTRINSIC          ABS, SIGN, SQRT
   68: *     ..
   69: *     .. Executable Statements ..
   70: *
   71: *     Test the input parameters.
   72: *
   73:       INFO = 0
   74: *
   75: *     Quick return if possible
   76: *
   77:       IF( N.LT.0 ) THEN
   78:          INFO = -1
   79:          CALL XERBLA( 'DSTERF', -INFO )
   80:          RETURN
   81:       END IF
   82:       IF( N.LE.1 )
   83:      $   RETURN
   84: *
   85: *     Determine the unit roundoff for this environment.
   86: *
   87:       EPS = DLAMCH( 'E' )
   88:       EPS2 = EPS**2
   89:       SAFMIN = DLAMCH( 'S' )
   90:       SAFMAX = ONE / SAFMIN
   91:       SSFMAX = SQRT( SAFMAX ) / THREE
   92:       SSFMIN = SQRT( SAFMIN ) / EPS2
   93:       RMAX = DLAMCH( 'O' )
   94: *
   95: *     Compute the eigenvalues of the tridiagonal matrix.
   96: *
   97:       NMAXIT = N*MAXIT
   98:       SIGMA = ZERO
   99:       JTOT = 0
  100: *
  101: *     Determine where the matrix splits and choose QL or QR iteration
  102: *     for each block, according to whether top or bottom diagonal
  103: *     element is smaller.
  104: *
  105:       L1 = 1
  106: *
  107:    10 CONTINUE
  108:       IF( L1.GT.N )
  109:      $   GO TO 170
  110:       IF( L1.GT.1 )
  111:      $   E( L1-1 ) = ZERO
  112:       DO 20 M = L1, N - 1
  113:          IF( ABS( E( M ) ).LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
  114:      $       1 ) ) ) )*EPS ) THEN
  115:             E( M ) = ZERO
  116:             GO TO 30
  117:          END IF
  118:    20 CONTINUE
  119:       M = N
  120: *
  121:    30 CONTINUE
  122:       L = L1
  123:       LSV = L
  124:       LEND = M
  125:       LENDSV = LEND
  126:       L1 = M + 1
  127:       IF( LEND.EQ.L )
  128:      $   GO TO 10
  129: *
  130: *     Scale submatrix in rows and columns L to LEND
  131: *
  132:       ANORM = DLANST( 'M', LEND-L+1, D( L ), E( L ) )
  133:       ISCALE = 0
  134:       IF( ANORM.EQ.ZERO )
  135:      $   GO TO 10      
  136:       IF( (ANORM.GT.SSFMAX) ) THEN
  137:          ISCALE = 1
  138:          CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
  139:      $                INFO )
  140:          CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
  141:      $                INFO )
  142:       ELSE IF( ANORM.LT.SSFMIN ) THEN
  143:          ISCALE = 2
  144:          CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
  145:      $                INFO )
  146:          CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
  147:      $                INFO )
  148:       END IF
  149: *
  150:       DO 40 I = L, LEND - 1
  151:          E( I ) = E( I )**2
  152:    40 CONTINUE
  153: *
  154: *     Choose between QL and QR iteration
  155: *
  156:       IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
  157:          LEND = LSV
  158:          L = LENDSV
  159:       END IF
  160: *
  161:       IF( LEND.GE.L ) THEN
  162: *
  163: *        QL Iteration
  164: *
  165: *        Look for small subdiagonal element.
  166: *
  167:    50    CONTINUE
  168:          IF( L.NE.LEND ) THEN
  169:             DO 60 M = L, LEND - 1
  170:                IF( ABS( E( M ) ).LE.EPS2*ABS( D( M )*D( M+1 ) ) )
  171:      $            GO TO 70
  172:    60       CONTINUE
  173:          END IF
  174:          M = LEND
  175: *
  176:    70    CONTINUE
  177:          IF( M.LT.LEND )
  178:      $      E( M ) = ZERO
  179:          P = D( L )
  180:          IF( M.EQ.L )
  181:      $      GO TO 90
  182: *
  183: *        If remaining matrix is 2 by 2, use DLAE2 to compute its
  184: *        eigenvalues.
  185: *
  186:          IF( M.EQ.L+1 ) THEN
  187:             RTE = SQRT( E( L ) )
  188:             CALL DLAE2( D( L ), RTE, D( L+1 ), RT1, RT2 )
  189:             D( L ) = RT1
  190:             D( L+1 ) = RT2
  191:             E( L ) = ZERO
  192:             L = L + 2
  193:             IF( L.LE.LEND )
  194:      $         GO TO 50
  195:             GO TO 150
  196:          END IF
  197: *
  198:          IF( JTOT.EQ.NMAXIT )
  199:      $      GO TO 150
  200:          JTOT = JTOT + 1
  201: *
  202: *        Form shift.
  203: *
  204:          RTE = SQRT( E( L ) )
  205:          SIGMA = ( D( L+1 )-P ) / ( TWO*RTE )
  206:          R = DLAPY2( SIGMA, ONE )
  207:          SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
  208: *
  209:          C = ONE
  210:          S = ZERO
  211:          GAMMA = D( M ) - SIGMA
  212:          P = GAMMA*GAMMA
  213: *
  214: *        Inner loop
  215: *
  216:          DO 80 I = M - 1, L, -1
  217:             BB = E( I )
  218:             R = P + BB
  219:             IF( I.NE.M-1 )
  220:      $         E( I+1 ) = S*R
  221:             OLDC = C
  222:             C = P / R
  223:             S = BB / R
  224:             OLDGAM = GAMMA
  225:             ALPHA = D( I )
  226:             GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
  227:             D( I+1 ) = OLDGAM + ( ALPHA-GAMMA )
  228:             IF( C.NE.ZERO ) THEN
  229:                P = ( GAMMA*GAMMA ) / C
  230:             ELSE
  231:                P = OLDC*BB
  232:             END IF
  233:    80    CONTINUE
  234: *
  235:          E( L ) = S*P
  236:          D( L ) = SIGMA + GAMMA
  237:          GO TO 50
  238: *
  239: *        Eigenvalue found.
  240: *
  241:    90    CONTINUE
  242:          D( L ) = P
  243: *
  244:          L = L + 1
  245:          IF( L.LE.LEND )
  246:      $      GO TO 50
  247:          GO TO 150
  248: *
  249:       ELSE
  250: *
  251: *        QR Iteration
  252: *
  253: *        Look for small superdiagonal element.
  254: *
  255:   100    CONTINUE
  256:          DO 110 M = L, LEND + 1, -1
  257:             IF( ABS( E( M-1 ) ).LE.EPS2*ABS( D( M )*D( M-1 ) ) )
  258:      $         GO TO 120
  259:   110    CONTINUE
  260:          M = LEND
  261: *
  262:   120    CONTINUE
  263:          IF( M.GT.LEND )
  264:      $      E( M-1 ) = ZERO
  265:          P = D( L )
  266:          IF( M.EQ.L )
  267:      $      GO TO 140
  268: *
  269: *        If remaining matrix is 2 by 2, use DLAE2 to compute its
  270: *        eigenvalues.
  271: *
  272:          IF( M.EQ.L-1 ) THEN
  273:             RTE = SQRT( E( L-1 ) )
  274:             CALL DLAE2( D( L ), RTE, D( L-1 ), RT1, RT2 )
  275:             D( L ) = RT1
  276:             D( L-1 ) = RT2
  277:             E( L-1 ) = ZERO
  278:             L = L - 2
  279:             IF( L.GE.LEND )
  280:      $         GO TO 100
  281:             GO TO 150
  282:          END IF
  283: *
  284:          IF( JTOT.EQ.NMAXIT )
  285:      $      GO TO 150
  286:          JTOT = JTOT + 1
  287: *
  288: *        Form shift.
  289: *
  290:          RTE = SQRT( E( L-1 ) )
  291:          SIGMA = ( D( L-1 )-P ) / ( TWO*RTE )
  292:          R = DLAPY2( SIGMA, ONE )
  293:          SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
  294: *
  295:          C = ONE
  296:          S = ZERO
  297:          GAMMA = D( M ) - SIGMA
  298:          P = GAMMA*GAMMA
  299: *
  300: *        Inner loop
  301: *
  302:          DO 130 I = M, L - 1
  303:             BB = E( I )
  304:             R = P + BB
  305:             IF( I.NE.M )
  306:      $         E( I-1 ) = S*R
  307:             OLDC = C
  308:             C = P / R
  309:             S = BB / R
  310:             OLDGAM = GAMMA
  311:             ALPHA = D( I+1 )
  312:             GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
  313:             D( I ) = OLDGAM + ( ALPHA-GAMMA )
  314:             IF( C.NE.ZERO ) THEN
  315:                P = ( GAMMA*GAMMA ) / C
  316:             ELSE
  317:                P = OLDC*BB
  318:             END IF
  319:   130    CONTINUE
  320: *
  321:          E( L-1 ) = S*P
  322:          D( L ) = SIGMA + GAMMA
  323:          GO TO 100
  324: *
  325: *        Eigenvalue found.
  326: *
  327:   140    CONTINUE
  328:          D( L ) = P
  329: *
  330:          L = L - 1
  331:          IF( L.GE.LEND )
  332:      $      GO TO 100
  333:          GO TO 150
  334: *
  335:       END IF
  336: *
  337: *     Undo scaling if necessary
  338: *
  339:   150 CONTINUE
  340:       IF( ISCALE.EQ.1 )
  341:      $   CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
  342:      $                D( LSV ), N, INFO )
  343:       IF( ISCALE.EQ.2 )
  344:      $   CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
  345:      $                D( LSV ), N, INFO )
  346: *
  347: *     Check for no convergence to an eigenvalue after a total
  348: *     of N*MAXIT iterations.
  349: *
  350:       IF( JTOT.LT.NMAXIT )
  351:      $   GO TO 10
  352:       DO 160 I = 1, N - 1
  353:          IF( E( I ).NE.ZERO )
  354:      $      INFO = INFO + 1
  355:   160 CONTINUE
  356:       GO TO 180
  357: *
  358: *     Sort eigenvalues in increasing order.
  359: *
  360:   170 CONTINUE
  361:       CALL DLASRT( 'I', N, D, INFO )
  362: *
  363:   180 CONTINUE
  364:       RETURN
  365: *
  366: *     End of DSTERF
  367: *
  368:       END

CVSweb interface <joel.bertrand@systella.fr>