File:  [local] / rpl / lapack / lapack / dstemr.f
Revision 1.23: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:07 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSTEMR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSTEMR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstemr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstemr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstemr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
   22: *                          M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
   23: *                          IWORK, LIWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE
   27: *       LOGICAL            TRYRAC
   28: *       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
   29: *       DOUBLE PRECISION VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            ISUPPZ( * ), IWORK( * )
   33: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
   34: *       DOUBLE PRECISION   Z( LDZ, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> DSTEMR computes selected eigenvalues and, optionally, eigenvectors
   44: *> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
   45: *> a well defined set of pairwise different real eigenvalues, the corresponding
   46: *> real eigenvectors are pairwise orthogonal.
   47: *>
   48: *> The spectrum may be computed either completely or partially by specifying
   49: *> either an interval (VL,VU] or a range of indices IL:IU for the desired
   50: *> eigenvalues.
   51: *>
   52: *> Depending on the number of desired eigenvalues, these are computed either
   53: *> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
   54: *> computed by the use of various suitable L D L^T factorizations near clusters
   55: *> of close eigenvalues (referred to as RRRs, Relatively Robust
   56: *> Representations). An informal sketch of the algorithm follows.
   57: *>
   58: *> For each unreduced block (submatrix) of T,
   59: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   60: *>        define all the wanted eigenvalues to high relative accuracy.
   61: *>        This means that small relative changes in the entries of D and L
   62: *>        cause only small relative changes in the eigenvalues and
   63: *>        eigenvectors. The standard (unfactored) representation of the
   64: *>        tridiagonal matrix T does not have this property in general.
   65: *>    (b) Compute the eigenvalues to suitable accuracy.
   66: *>        If the eigenvectors are desired, the algorithm attains full
   67: *>        accuracy of the computed eigenvalues only right before
   68: *>        the corresponding vectors have to be computed, see steps c) and d).
   69: *>    (c) For each cluster of close eigenvalues, select a new
   70: *>        shift close to the cluster, find a new factorization, and refine
   71: *>        the shifted eigenvalues to suitable accuracy.
   72: *>    (d) For each eigenvalue with a large enough relative separation compute
   73: *>        the corresponding eigenvector by forming a rank revealing twisted
   74: *>        factorization. Go back to (c) for any clusters that remain.
   75: *>
   76: *> For more details, see:
   77: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   78: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   79: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   80: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   81: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   82: *>   2004.  Also LAPACK Working Note 154.
   83: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   84: *>   tridiagonal eigenvalue/eigenvector problem",
   85: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   86: *>   UC Berkeley, May 1997.
   87: *>
   88: *> Further Details
   89: *> 1.DSTEMR works only on machines which follow IEEE-754
   90: *> floating-point standard in their handling of infinities and NaNs.
   91: *> This permits the use of efficient inner loops avoiding a check for
   92: *> zero divisors.
   93: *> \endverbatim
   94: *
   95: *  Arguments:
   96: *  ==========
   97: *
   98: *> \param[in] JOBZ
   99: *> \verbatim
  100: *>          JOBZ is CHARACTER*1
  101: *>          = 'N':  Compute eigenvalues only;
  102: *>          = 'V':  Compute eigenvalues and eigenvectors.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] RANGE
  106: *> \verbatim
  107: *>          RANGE is CHARACTER*1
  108: *>          = 'A': all eigenvalues will be found.
  109: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  110: *>                 will be found.
  111: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] N
  115: *> \verbatim
  116: *>          N is INTEGER
  117: *>          The order of the matrix.  N >= 0.
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] D
  121: *> \verbatim
  122: *>          D is DOUBLE PRECISION array, dimension (N)
  123: *>          On entry, the N diagonal elements of the tridiagonal matrix
  124: *>          T. On exit, D is overwritten.
  125: *> \endverbatim
  126: *>
  127: *> \param[in,out] E
  128: *> \verbatim
  129: *>          E is DOUBLE PRECISION array, dimension (N)
  130: *>          On entry, the (N-1) subdiagonal elements of the tridiagonal
  131: *>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
  132: *>          input, but is used internally as workspace.
  133: *>          On exit, E is overwritten.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] VL
  137: *> \verbatim
  138: *>          VL is DOUBLE PRECISION
  139: *>
  140: *>          If RANGE='V', the lower bound of the interval to
  141: *>          be searched for eigenvalues. VL < VU.
  142: *>          Not referenced if RANGE = 'A' or 'I'.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] VU
  146: *> \verbatim
  147: *>          VU is DOUBLE PRECISION
  148: *>
  149: *>          If RANGE='V', the upper bound of the interval to
  150: *>          be searched for eigenvalues. VL < VU.
  151: *>          Not referenced if RANGE = 'A' or 'I'.
  152: *> \endverbatim
  153: *>
  154: *> \param[in] IL
  155: *> \verbatim
  156: *>          IL is INTEGER
  157: *>
  158: *>          If RANGE='I', the index of the
  159: *>          smallest eigenvalue to be returned.
  160: *>          1 <= IL <= IU <= N, if N > 0.
  161: *>          Not referenced if RANGE = 'A' or 'V'.
  162: *> \endverbatim
  163: *>
  164: *> \param[in] IU
  165: *> \verbatim
  166: *>          IU is INTEGER
  167: *>
  168: *>          If RANGE='I', the index of the
  169: *>          largest eigenvalue to be returned.
  170: *>          1 <= IL <= IU <= N, if N > 0.
  171: *>          Not referenced if RANGE = 'A' or 'V'.
  172: *> \endverbatim
  173: *>
  174: *> \param[out] M
  175: *> \verbatim
  176: *>          M is INTEGER
  177: *>          The total number of eigenvalues found.  0 <= M <= N.
  178: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  179: *> \endverbatim
  180: *>
  181: *> \param[out] W
  182: *> \verbatim
  183: *>          W is DOUBLE PRECISION array, dimension (N)
  184: *>          The first M elements contain the selected eigenvalues in
  185: *>          ascending order.
  186: *> \endverbatim
  187: *>
  188: *> \param[out] Z
  189: *> \verbatim
  190: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  191: *>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
  192: *>          contain the orthonormal eigenvectors of the matrix T
  193: *>          corresponding to the selected eigenvalues, with the i-th
  194: *>          column of Z holding the eigenvector associated with W(i).
  195: *>          If JOBZ = 'N', then Z is not referenced.
  196: *>          Note: the user must ensure that at least max(1,M) columns are
  197: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  198: *>          is not known in advance and can be computed with a workspace
  199: *>          query by setting NZC = -1, see below.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDZ
  203: *> \verbatim
  204: *>          LDZ is INTEGER
  205: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  206: *>          JOBZ = 'V', then LDZ >= max(1,N).
  207: *> \endverbatim
  208: *>
  209: *> \param[in] NZC
  210: *> \verbatim
  211: *>          NZC is INTEGER
  212: *>          The number of eigenvectors to be held in the array Z.
  213: *>          If RANGE = 'A', then NZC >= max(1,N).
  214: *>          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
  215: *>          If RANGE = 'I', then NZC >= IU-IL+1.
  216: *>          If NZC = -1, then a workspace query is assumed; the
  217: *>          routine calculates the number of columns of the array Z that
  218: *>          are needed to hold the eigenvectors.
  219: *>          This value is returned as the first entry of the Z array, and
  220: *>          no error message related to NZC is issued by XERBLA.
  221: *> \endverbatim
  222: *>
  223: *> \param[out] ISUPPZ
  224: *> \verbatim
  225: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  226: *>          The support of the eigenvectors in Z, i.e., the indices
  227: *>          indicating the nonzero elements in Z. The i-th computed eigenvector
  228: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  229: *>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
  230: *>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
  231: *> \endverbatim
  232: *>
  233: *> \param[in,out] TRYRAC
  234: *> \verbatim
  235: *>          TRYRAC is LOGICAL
  236: *>          If TRYRAC = .TRUE., indicates that the code should check whether
  237: *>          the tridiagonal matrix defines its eigenvalues to high relative
  238: *>          accuracy.  If so, the code uses relative-accuracy preserving
  239: *>          algorithms that might be (a bit) slower depending on the matrix.
  240: *>          If the matrix does not define its eigenvalues to high relative
  241: *>          accuracy, the code can uses possibly faster algorithms.
  242: *>          If TRYRAC = .FALSE., the code is not required to guarantee
  243: *>          relatively accurate eigenvalues and can use the fastest possible
  244: *>          techniques.
  245: *>          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
  246: *>          does not define its eigenvalues to high relative accuracy.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] WORK
  250: *> \verbatim
  251: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
  252: *>          On exit, if INFO = 0, WORK(1) returns the optimal
  253: *>          (and minimal) LWORK.
  254: *> \endverbatim
  255: *>
  256: *> \param[in] LWORK
  257: *> \verbatim
  258: *>          LWORK is INTEGER
  259: *>          The dimension of the array WORK. LWORK >= max(1,18*N)
  260: *>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
  261: *>          If LWORK = -1, then a workspace query is assumed; the routine
  262: *>          only calculates the optimal size of the WORK array, returns
  263: *>          this value as the first entry of the WORK array, and no error
  264: *>          message related to LWORK is issued by XERBLA.
  265: *> \endverbatim
  266: *>
  267: *> \param[out] IWORK
  268: *> \verbatim
  269: *>          IWORK is INTEGER array, dimension (LIWORK)
  270: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  271: *> \endverbatim
  272: *>
  273: *> \param[in] LIWORK
  274: *> \verbatim
  275: *>          LIWORK is INTEGER
  276: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
  277: *>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
  278: *>          if only the eigenvalues are to be computed.
  279: *>          If LIWORK = -1, then a workspace query is assumed; the
  280: *>          routine only calculates the optimal size of the IWORK array,
  281: *>          returns this value as the first entry of the IWORK array, and
  282: *>          no error message related to LIWORK is issued by XERBLA.
  283: *> \endverbatim
  284: *>
  285: *> \param[out] INFO
  286: *> \verbatim
  287: *>          INFO is INTEGER
  288: *>          On exit, INFO
  289: *>          = 0:  successful exit
  290: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  291: *>          > 0:  if INFO = 1X, internal error in DLARRE,
  292: *>                if INFO = 2X, internal error in DLARRV.
  293: *>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
  294: *>                the nonzero error code returned by DLARRE or
  295: *>                DLARRV, respectively.
  296: *> \endverbatim
  297: *
  298: *  Authors:
  299: *  ========
  300: *
  301: *> \author Univ. of Tennessee
  302: *> \author Univ. of California Berkeley
  303: *> \author Univ. of Colorado Denver
  304: *> \author NAG Ltd.
  305: *
  306: *> \ingroup doubleOTHERcomputational
  307: *
  308: *> \par Contributors:
  309: *  ==================
  310: *>
  311: *> Beresford Parlett, University of California, Berkeley, USA \n
  312: *> Jim Demmel, University of California, Berkeley, USA \n
  313: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  314: *> Osni Marques, LBNL/NERSC, USA \n
  315: *> Christof Voemel, University of California, Berkeley, USA
  316: *
  317: *  =====================================================================
  318:       SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
  319:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
  320:      $                   IWORK, LIWORK, INFO )
  321: *
  322: *  -- LAPACK computational routine --
  323: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  324: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  325: *
  326: *     .. Scalar Arguments ..
  327:       CHARACTER          JOBZ, RANGE
  328:       LOGICAL            TRYRAC
  329:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
  330:       DOUBLE PRECISION VL, VU
  331: *     ..
  332: *     .. Array Arguments ..
  333:       INTEGER            ISUPPZ( * ), IWORK( * )
  334:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
  335:       DOUBLE PRECISION   Z( LDZ, * )
  336: *     ..
  337: *
  338: *  =====================================================================
  339: *
  340: *     .. Parameters ..
  341:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
  342:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  343:      $                     FOUR = 4.0D0,
  344:      $                     MINRGP = 1.0D-3 )
  345: *     ..
  346: *     .. Local Scalars ..
  347:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
  348:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
  349:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
  350:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
  351:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
  352:      $                   NZCMIN, OFFSET, WBEGIN, WEND
  353:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
  354:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
  355:      $                   THRESH, TMP, TNRM, WL, WU
  356: *     ..
  357: *     ..
  358: *     .. External Functions ..
  359:       LOGICAL            LSAME
  360:       DOUBLE PRECISION   DLAMCH, DLANST
  361:       EXTERNAL           LSAME, DLAMCH, DLANST
  362: *     ..
  363: *     .. External Subroutines ..
  364:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
  365:      $                   DLARRR, DLARRV, DLASRT, DSCAL, DSWAP, XERBLA
  366: *     ..
  367: *     .. Intrinsic Functions ..
  368:       INTRINSIC          MAX, MIN, SQRT
  369: 
  370: 
  371: *     ..
  372: *     .. Executable Statements ..
  373: *
  374: *     Test the input parameters.
  375: *
  376:       WANTZ = LSAME( JOBZ, 'V' )
  377:       ALLEIG = LSAME( RANGE, 'A' )
  378:       VALEIG = LSAME( RANGE, 'V' )
  379:       INDEIG = LSAME( RANGE, 'I' )
  380: *
  381:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
  382:       ZQUERY = ( NZC.EQ.-1 )
  383: 
  384: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
  385: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
  386: *     Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N.
  387:       IF( WANTZ ) THEN
  388:          LWMIN = 18*N
  389:          LIWMIN = 10*N
  390:       ELSE
  391: *        need less workspace if only the eigenvalues are wanted
  392:          LWMIN = 12*N
  393:          LIWMIN = 8*N
  394:       ENDIF
  395: 
  396:       WL = ZERO
  397:       WU = ZERO
  398:       IIL = 0
  399:       IIU = 0
  400:       NSPLIT = 0
  401: 
  402:       IF( VALEIG ) THEN
  403: *        We do not reference VL, VU in the cases RANGE = 'I','A'
  404: *        The interval (WL, WU] contains all the wanted eigenvalues.
  405: *        It is either given by the user or computed in DLARRE.
  406:          WL = VL
  407:          WU = VU
  408:       ELSEIF( INDEIG ) THEN
  409: *        We do not reference IL, IU in the cases RANGE = 'V','A'
  410:          IIL = IL
  411:          IIU = IU
  412:       ENDIF
  413: *
  414:       INFO = 0
  415:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  416:          INFO = -1
  417:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  418:          INFO = -2
  419:       ELSE IF( N.LT.0 ) THEN
  420:          INFO = -3
  421:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
  422:          INFO = -7
  423:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
  424:          INFO = -8
  425:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
  426:          INFO = -9
  427:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  428:          INFO = -13
  429:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  430:          INFO = -17
  431:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  432:          INFO = -19
  433:       END IF
  434: *
  435: *     Get machine constants.
  436: *
  437:       SAFMIN = DLAMCH( 'Safe minimum' )
  438:       EPS = DLAMCH( 'Precision' )
  439:       SMLNUM = SAFMIN / EPS
  440:       BIGNUM = ONE / SMLNUM
  441:       RMIN = SQRT( SMLNUM )
  442:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  443: *
  444:       IF( INFO.EQ.0 ) THEN
  445:          WORK( 1 ) = LWMIN
  446:          IWORK( 1 ) = LIWMIN
  447: *
  448:          IF( WANTZ .AND. ALLEIG ) THEN
  449:             NZCMIN = N
  450:          ELSE IF( WANTZ .AND. VALEIG ) THEN
  451:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
  452:      $                            NZCMIN, ITMP, ITMP2, INFO )
  453:          ELSE IF( WANTZ .AND. INDEIG ) THEN
  454:             NZCMIN = IIU-IIL+1
  455:          ELSE
  456: *           WANTZ .EQ. FALSE.
  457:             NZCMIN = 0
  458:          ENDIF
  459:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
  460:             Z( 1,1 ) = NZCMIN
  461:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
  462:             INFO = -14
  463:          END IF
  464:       END IF
  465: 
  466:       IF( INFO.NE.0 ) THEN
  467: *
  468:          CALL XERBLA( 'DSTEMR', -INFO )
  469: *
  470:          RETURN
  471:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
  472:          RETURN
  473:       END IF
  474: *
  475: *     Handle N = 0, 1, and 2 cases immediately
  476: *
  477:       M = 0
  478:       IF( N.EQ.0 )
  479:      $   RETURN
  480: *
  481:       IF( N.EQ.1 ) THEN
  482:          IF( ALLEIG .OR. INDEIG ) THEN
  483:             M = 1
  484:             W( 1 ) = D( 1 )
  485:          ELSE
  486:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
  487:                M = 1
  488:                W( 1 ) = D( 1 )
  489:             END IF
  490:          END IF
  491:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  492:             Z( 1, 1 ) = ONE
  493:             ISUPPZ(1) = 1
  494:             ISUPPZ(2) = 1
  495:          END IF
  496:          RETURN
  497:       END IF
  498: *
  499:       IF( N.EQ.2 ) THEN
  500:          IF( .NOT.WANTZ ) THEN
  501:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
  502:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  503:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
  504:          END IF
  505:          IF( ALLEIG.OR.
  506:      $      (VALEIG.AND.(R2.GT.WL).AND.
  507:      $                  (R2.LE.WU)).OR.
  508:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
  509:             M = M+1
  510:             W( M ) = R2
  511:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  512:                Z( 1, M ) = -SN
  513:                Z( 2, M ) = CS
  514: *              Note: At most one of SN and CS can be zero.
  515:                IF (SN.NE.ZERO) THEN
  516:                   IF (CS.NE.ZERO) THEN
  517:                      ISUPPZ(2*M-1) = 1
  518:                      ISUPPZ(2*M) = 2
  519:                   ELSE
  520:                      ISUPPZ(2*M-1) = 1
  521:                      ISUPPZ(2*M) = 1
  522:                   END IF
  523:                ELSE
  524:                   ISUPPZ(2*M-1) = 2
  525:                   ISUPPZ(2*M) = 2
  526:                END IF
  527:             ENDIF
  528:          ENDIF
  529:          IF( ALLEIG.OR.
  530:      $      (VALEIG.AND.(R1.GT.WL).AND.
  531:      $                  (R1.LE.WU)).OR.
  532:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
  533:             M = M+1
  534:             W( M ) = R1
  535:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  536:                Z( 1, M ) = CS
  537:                Z( 2, M ) = SN
  538: *              Note: At most one of SN and CS can be zero.
  539:                IF (SN.NE.ZERO) THEN
  540:                   IF (CS.NE.ZERO) THEN
  541:                      ISUPPZ(2*M-1) = 1
  542:                      ISUPPZ(2*M) = 2
  543:                   ELSE
  544:                      ISUPPZ(2*M-1) = 1
  545:                      ISUPPZ(2*M) = 1
  546:                   END IF
  547:                ELSE
  548:                   ISUPPZ(2*M-1) = 2
  549:                   ISUPPZ(2*M) = 2
  550:                END IF
  551:             ENDIF
  552:          ENDIF
  553: 
  554:       ELSE
  555: 
  556: *     Continue with general N
  557: 
  558:          INDGRS = 1
  559:          INDERR = 2*N + 1
  560:          INDGP = 3*N + 1
  561:          INDD = 4*N + 1
  562:          INDE2 = 5*N + 1
  563:          INDWRK = 6*N + 1
  564: *
  565:          IINSPL = 1
  566:          IINDBL = N + 1
  567:          IINDW = 2*N + 1
  568:          IINDWK = 3*N + 1
  569: *
  570: *        Scale matrix to allowable range, if necessary.
  571: *        The allowable range is related to the PIVMIN parameter; see the
  572: *        comments in DLARRD.  The preference for scaling small values
  573: *        up is heuristic; we expect users' matrices not to be close to the
  574: *        RMAX threshold.
  575: *
  576:          SCALE = ONE
  577:          TNRM = DLANST( 'M', N, D, E )
  578:          IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  579:             SCALE = RMIN / TNRM
  580:          ELSE IF( TNRM.GT.RMAX ) THEN
  581:             SCALE = RMAX / TNRM
  582:          END IF
  583:          IF( SCALE.NE.ONE ) THEN
  584:             CALL DSCAL( N, SCALE, D, 1 )
  585:             CALL DSCAL( N-1, SCALE, E, 1 )
  586:             TNRM = TNRM*SCALE
  587:             IF( VALEIG ) THEN
  588: *              If eigenvalues in interval have to be found,
  589: *              scale (WL, WU] accordingly
  590:                WL = WL*SCALE
  591:                WU = WU*SCALE
  592:             ENDIF
  593:          END IF
  594: *
  595: *        Compute the desired eigenvalues of the tridiagonal after splitting
  596: *        into smaller subblocks if the corresponding off-diagonal elements
  597: *        are small
  598: *        THRESH is the splitting parameter for DLARRE
  599: *        A negative THRESH forces the old splitting criterion based on the
  600: *        size of the off-diagonal. A positive THRESH switches to splitting
  601: *        which preserves relative accuracy.
  602: *
  603:          IF( TRYRAC ) THEN
  604: *           Test whether the matrix warrants the more expensive relative approach.
  605:             CALL DLARRR( N, D, E, IINFO )
  606:          ELSE
  607: *           The user does not care about relative accurately eigenvalues
  608:             IINFO = -1
  609:          ENDIF
  610: *        Set the splitting criterion
  611:          IF (IINFO.EQ.0) THEN
  612:             THRESH = EPS
  613:          ELSE
  614:             THRESH = -EPS
  615: *           relative accuracy is desired but T does not guarantee it
  616:             TRYRAC = .FALSE.
  617:          ENDIF
  618: *
  619:          IF( TRYRAC ) THEN
  620: *           Copy original diagonal, needed to guarantee relative accuracy
  621:             CALL DCOPY(N,D,1,WORK(INDD),1)
  622:          ENDIF
  623: *        Store the squares of the offdiagonal values of T
  624:          DO 5 J = 1, N-1
  625:             WORK( INDE2+J-1 ) = E(J)**2
  626:  5       CONTINUE
  627: 
  628: *        Set the tolerance parameters for bisection
  629:          IF( .NOT.WANTZ ) THEN
  630: *           DLARRE computes the eigenvalues to full precision.
  631:             RTOL1 = FOUR * EPS
  632:             RTOL2 = FOUR * EPS
  633:          ELSE
  634: *           DLARRE computes the eigenvalues to less than full precision.
  635: *           DLARRV will refine the eigenvalue approximations, and we can
  636: *           need less accurate initial bisection in DLARRE.
  637: *           Note: these settings do only affect the subset case and DLARRE
  638:             RTOL1 = SQRT(EPS)
  639:             RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
  640:          ENDIF
  641:          CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
  642:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
  643:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
  644:      $             WORK( INDGP ), IWORK( IINDBL ),
  645:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
  646:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  647:          IF( IINFO.NE.0 ) THEN
  648:             INFO = 10 + ABS( IINFO )
  649:             RETURN
  650:          END IF
  651: *        Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
  652: *        part of the spectrum. All desired eigenvalues are contained in
  653: *        (WL,WU]
  654: 
  655: 
  656:          IF( WANTZ ) THEN
  657: *
  658: *           Compute the desired eigenvectors corresponding to the computed
  659: *           eigenvalues
  660: *
  661:             CALL DLARRV( N, WL, WU, D, E,
  662:      $                PIVMIN, IWORK( IINSPL ), M,
  663:      $                1, M, MINRGP, RTOL1, RTOL2,
  664:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
  665:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
  666:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  667:             IF( IINFO.NE.0 ) THEN
  668:                INFO = 20 + ABS( IINFO )
  669:                RETURN
  670:             END IF
  671:          ELSE
  672: *           DLARRE computes eigenvalues of the (shifted) root representation
  673: *           DLARRV returns the eigenvalues of the unshifted matrix.
  674: *           However, if the eigenvectors are not desired by the user, we need
  675: *           to apply the corresponding shifts from DLARRE to obtain the
  676: *           eigenvalues of the original matrix.
  677:             DO 20 J = 1, M
  678:                ITMP = IWORK( IINDBL+J-1 )
  679:                W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
  680:  20         CONTINUE
  681:          END IF
  682: *
  683: 
  684:          IF ( TRYRAC ) THEN
  685: *           Refine computed eigenvalues so that they are relatively accurate
  686: *           with respect to the original matrix T.
  687:             IBEGIN = 1
  688:             WBEGIN = 1
  689:             DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
  690:                IEND = IWORK( IINSPL+JBLK-1 )
  691:                IN = IEND - IBEGIN + 1
  692:                WEND = WBEGIN - 1
  693: *              check if any eigenvalues have to be refined in this block
  694:  36            CONTINUE
  695:                IF( WEND.LT.M ) THEN
  696:                   IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
  697:                      WEND = WEND + 1
  698:                      GO TO 36
  699:                   END IF
  700:                END IF
  701:                IF( WEND.LT.WBEGIN ) THEN
  702:                   IBEGIN = IEND + 1
  703:                   GO TO 39
  704:                END IF
  705: 
  706:                OFFSET = IWORK(IINDW+WBEGIN-1)-1
  707:                IFIRST = IWORK(IINDW+WBEGIN-1)
  708:                ILAST = IWORK(IINDW+WEND-1)
  709:                RTOL2 = FOUR * EPS
  710:                CALL DLARRJ( IN,
  711:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
  712:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
  713:      $                   WORK( INDERR+WBEGIN-1 ),
  714:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
  715:      $                   TNRM, IINFO )
  716:                IBEGIN = IEND + 1
  717:                WBEGIN = WEND + 1
  718:  39         CONTINUE
  719:          ENDIF
  720: *
  721: *        If matrix was scaled, then rescale eigenvalues appropriately.
  722: *
  723:          IF( SCALE.NE.ONE ) THEN
  724:             CALL DSCAL( M, ONE / SCALE, W, 1 )
  725:          END IF
  726: 
  727:       END IF
  728: 
  729: *
  730: *     If eigenvalues are not in increasing order, then sort them,
  731: *     possibly along with eigenvectors.
  732: *
  733:       IF( NSPLIT.GT.1 .OR. N.EQ.2 ) THEN
  734:          IF( .NOT. WANTZ ) THEN
  735:             CALL DLASRT( 'I', M, W, IINFO )
  736:             IF( IINFO.NE.0 ) THEN
  737:                INFO = 3
  738:                RETURN
  739:             END IF
  740:          ELSE
  741:             DO 60 J = 1, M - 1
  742:                I = 0
  743:                TMP = W( J )
  744:                DO 50 JJ = J + 1, M
  745:                   IF( W( JJ ).LT.TMP ) THEN
  746:                      I = JJ
  747:                      TMP = W( JJ )
  748:                   END IF
  749:  50            CONTINUE
  750:                IF( I.NE.0 ) THEN
  751:                   W( I ) = W( J )
  752:                   W( J ) = TMP
  753:                   IF( WANTZ ) THEN
  754:                      CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  755:                      ITMP = ISUPPZ( 2*I-1 )
  756:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
  757:                      ISUPPZ( 2*J-1 ) = ITMP
  758:                      ITMP = ISUPPZ( 2*I )
  759:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
  760:                      ISUPPZ( 2*J ) = ITMP
  761:                   END IF
  762:                END IF
  763:  60         CONTINUE
  764:          END IF
  765:       ENDIF
  766: *
  767: *
  768:       WORK( 1 ) = LWMIN
  769:       IWORK( 1 ) = LIWMIN
  770:       RETURN
  771: *
  772: *     End of DSTEMR
  773: *
  774:       END

CVSweb interface <joel.bertrand@systella.fr>