File:  [local] / rpl / lapack / lapack / dstemr.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:58 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
    2:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
    3:      $                   IWORK, LIWORK, INFO )
    4:       IMPLICIT NONE
    5: *
    6: *  -- LAPACK computational routine (version 3.2.2)                                  --
    7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    9: *  -- June 2010                                                       --
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          JOBZ, RANGE
   13:       LOGICAL            TRYRAC
   14:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
   15:       DOUBLE PRECISION VL, VU
   16: *     ..
   17: *     .. Array Arguments ..
   18:       INTEGER            ISUPPZ( * ), IWORK( * )
   19:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
   20:       DOUBLE PRECISION   Z( LDZ, * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  DSTEMR computes selected eigenvalues and, optionally, eigenvectors
   27: *  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
   28: *  a well defined set of pairwise different real eigenvalues, the corresponding
   29: *  real eigenvectors are pairwise orthogonal.
   30: *
   31: *  The spectrum may be computed either completely or partially by specifying
   32: *  either an interval (VL,VU] or a range of indices IL:IU for the desired
   33: *  eigenvalues.
   34: *
   35: *  Depending on the number of desired eigenvalues, these are computed either
   36: *  by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
   37: *  computed by the use of various suitable L D L^T factorizations near clusters
   38: *  of close eigenvalues (referred to as RRRs, Relatively Robust
   39: *  Representations). An informal sketch of the algorithm follows.
   40: *
   41: *  For each unreduced block (submatrix) of T,
   42: *     (a) Compute T - sigma I  = L D L^T, so that L and D
   43: *         define all the wanted eigenvalues to high relative accuracy.
   44: *         This means that small relative changes in the entries of D and L
   45: *         cause only small relative changes in the eigenvalues and
   46: *         eigenvectors. The standard (unfactored) representation of the
   47: *         tridiagonal matrix T does not have this property in general.
   48: *     (b) Compute the eigenvalues to suitable accuracy.
   49: *         If the eigenvectors are desired, the algorithm attains full
   50: *         accuracy of the computed eigenvalues only right before
   51: *         the corresponding vectors have to be computed, see steps c) and d).
   52: *     (c) For each cluster of close eigenvalues, select a new
   53: *         shift close to the cluster, find a new factorization, and refine
   54: *         the shifted eigenvalues to suitable accuracy.
   55: *     (d) For each eigenvalue with a large enough relative separation compute
   56: *         the corresponding eigenvector by forming a rank revealing twisted
   57: *         factorization. Go back to (c) for any clusters that remain.
   58: *
   59: *  For more details, see:
   60: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   61: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   62: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   63: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   64: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   65: *    2004.  Also LAPACK Working Note 154.
   66: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   67: *    tridiagonal eigenvalue/eigenvector problem",
   68: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
   69: *    UC Berkeley, May 1997.
   70: *
   71: *  Further Details
   72: *  1.DSTEMR works only on machines which follow IEEE-754
   73: *  floating-point standard in their handling of infinities and NaNs.
   74: *  This permits the use of efficient inner loops avoiding a check for
   75: *  zero divisors.
   76: *
   77: *  Arguments
   78: *  =========
   79: *
   80: *  JOBZ    (input) CHARACTER*1
   81: *          = 'N':  Compute eigenvalues only;
   82: *          = 'V':  Compute eigenvalues and eigenvectors.
   83: *
   84: *  RANGE   (input) CHARACTER*1
   85: *          = 'A': all eigenvalues will be found.
   86: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   87: *                 will be found.
   88: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   89: *
   90: *  N       (input) INTEGER
   91: *          The order of the matrix.  N >= 0.
   92: *
   93: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   94: *          On entry, the N diagonal elements of the tridiagonal matrix
   95: *          T. On exit, D is overwritten.
   96: *
   97: *  E       (input/output) DOUBLE PRECISION array, dimension (N)
   98: *          On entry, the (N-1) subdiagonal elements of the tridiagonal
   99: *          matrix T in elements 1 to N-1 of E. E(N) need not be set on
  100: *          input, but is used internally as workspace.
  101: *          On exit, E is overwritten.
  102: *
  103: *  VL      (input) DOUBLE PRECISION
  104: *  VU      (input) DOUBLE PRECISION
  105: *          If RANGE='V', the lower and upper bounds of the interval to
  106: *          be searched for eigenvalues. VL < VU.
  107: *          Not referenced if RANGE = 'A' or 'I'.
  108: *
  109: *  IL      (input) INTEGER
  110: *  IU      (input) INTEGER
  111: *          If RANGE='I', the indices (in ascending order) of the
  112: *          smallest and largest eigenvalues to be returned.
  113: *          1 <= IL <= IU <= N, if N > 0.
  114: *          Not referenced if RANGE = 'A' or 'V'.
  115: *
  116: *  M       (output) INTEGER
  117: *          The total number of eigenvalues found.  0 <= M <= N.
  118: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  119: *
  120: *  W       (output) DOUBLE PRECISION array, dimension (N)
  121: *          The first M elements contain the selected eigenvalues in
  122: *          ascending order.
  123: *
  124: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  125: *          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
  126: *          contain the orthonormal eigenvectors of the matrix T
  127: *          corresponding to the selected eigenvalues, with the i-th
  128: *          column of Z holding the eigenvector associated with W(i).
  129: *          If JOBZ = 'N', then Z is not referenced.
  130: *          Note: the user must ensure that at least max(1,M) columns are
  131: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  132: *          is not known in advance and can be computed with a workspace
  133: *          query by setting NZC = -1, see below.
  134: *
  135: *  LDZ     (input) INTEGER
  136: *          The leading dimension of the array Z.  LDZ >= 1, and if
  137: *          JOBZ = 'V', then LDZ >= max(1,N).
  138: *
  139: *  NZC     (input) INTEGER
  140: *          The number of eigenvectors to be held in the array Z.
  141: *          If RANGE = 'A', then NZC >= max(1,N).
  142: *          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
  143: *          If RANGE = 'I', then NZC >= IU-IL+1.
  144: *          If NZC = -1, then a workspace query is assumed; the
  145: *          routine calculates the number of columns of the array Z that
  146: *          are needed to hold the eigenvectors.
  147: *          This value is returned as the first entry of the Z array, and
  148: *          no error message related to NZC is issued by XERBLA.
  149: *
  150: *  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
  151: *          The support of the eigenvectors in Z, i.e., the indices
  152: *          indicating the nonzero elements in Z. The i-th computed eigenvector
  153: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  154: *          ISUPPZ( 2*i ). This is relevant in the case when the matrix
  155: *          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
  156: *
  157: *  TRYRAC  (input/output) LOGICAL
  158: *          If TRYRAC.EQ..TRUE., indicates that the code should check whether
  159: *          the tridiagonal matrix defines its eigenvalues to high relative
  160: *          accuracy.  If so, the code uses relative-accuracy preserving
  161: *          algorithms that might be (a bit) slower depending on the matrix.
  162: *          If the matrix does not define its eigenvalues to high relative
  163: *          accuracy, the code can uses possibly faster algorithms.
  164: *          If TRYRAC.EQ..FALSE., the code is not required to guarantee
  165: *          relatively accurate eigenvalues and can use the fastest possible
  166: *          techniques.
  167: *          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
  168: *          does not define its eigenvalues to high relative accuracy.
  169: *
  170: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
  171: *          On exit, if INFO = 0, WORK(1) returns the optimal
  172: *          (and minimal) LWORK.
  173: *
  174: *  LWORK   (input) INTEGER
  175: *          The dimension of the array WORK. LWORK >= max(1,18*N)
  176: *          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
  177: *          If LWORK = -1, then a workspace query is assumed; the routine
  178: *          only calculates the optimal size of the WORK array, returns
  179: *          this value as the first entry of the WORK array, and no error
  180: *          message related to LWORK is issued by XERBLA.
  181: *
  182: *  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
  183: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  184: *
  185: *  LIWORK  (input) INTEGER
  186: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
  187: *          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
  188: *          if only the eigenvalues are to be computed.
  189: *          If LIWORK = -1, then a workspace query is assumed; the
  190: *          routine only calculates the optimal size of the IWORK array,
  191: *          returns this value as the first entry of the IWORK array, and
  192: *          no error message related to LIWORK is issued by XERBLA.
  193: *
  194: *  INFO    (output) INTEGER
  195: *          On exit, INFO
  196: *          = 0:  successful exit
  197: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  198: *          > 0:  if INFO = 1X, internal error in DLARRE,
  199: *                if INFO = 2X, internal error in DLARRV.
  200: *                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
  201: *                the nonzero error code returned by DLARRE or
  202: *                DLARRV, respectively.
  203: *
  204: *
  205: *  Further Details
  206: *  ===============
  207: *
  208: *  Based on contributions by
  209: *     Beresford Parlett, University of California, Berkeley, USA
  210: *     Jim Demmel, University of California, Berkeley, USA
  211: *     Inderjit Dhillon, University of Texas, Austin, USA
  212: *     Osni Marques, LBNL/NERSC, USA
  213: *     Christof Voemel, University of California, Berkeley, USA
  214: *
  215: *  =====================================================================
  216: *
  217: *     .. Parameters ..
  218:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
  219:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  220:      $                     FOUR = 4.0D0,
  221:      $                     MINRGP = 1.0D-3 )
  222: *     ..
  223: *     .. Local Scalars ..
  224:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
  225:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
  226:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
  227:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
  228:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
  229:      $                   NZCMIN, OFFSET, WBEGIN, WEND
  230:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
  231:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
  232:      $                   THRESH, TMP, TNRM, WL, WU
  233: *     ..
  234: *     ..
  235: *     .. External Functions ..
  236:       LOGICAL            LSAME
  237:       DOUBLE PRECISION   DLAMCH, DLANST
  238:       EXTERNAL           LSAME, DLAMCH, DLANST
  239: *     ..
  240: *     .. External Subroutines ..
  241:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
  242:      $                   DLARRR, DLARRV, DLASRT, DSCAL, DSWAP, XERBLA
  243: *     ..
  244: *     .. Intrinsic Functions ..
  245:       INTRINSIC          MAX, MIN, SQRT
  246: 
  247: 
  248: *     ..
  249: *     .. Executable Statements ..
  250: *
  251: *     Test the input parameters.
  252: *
  253:       WANTZ = LSAME( JOBZ, 'V' )
  254:       ALLEIG = LSAME( RANGE, 'A' )
  255:       VALEIG = LSAME( RANGE, 'V' )
  256:       INDEIG = LSAME( RANGE, 'I' )
  257: *
  258:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
  259:       ZQUERY = ( NZC.EQ.-1 )
  260: 
  261: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
  262: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
  263: *     Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N.
  264:       IF( WANTZ ) THEN
  265:          LWMIN = 18*N
  266:          LIWMIN = 10*N
  267:       ELSE
  268: *        need less workspace if only the eigenvalues are wanted
  269:          LWMIN = 12*N
  270:          LIWMIN = 8*N
  271:       ENDIF
  272: 
  273:       WL = ZERO
  274:       WU = ZERO
  275:       IIL = 0
  276:       IIU = 0
  277: 
  278:       IF( VALEIG ) THEN
  279: *        We do not reference VL, VU in the cases RANGE = 'I','A'
  280: *        The interval (WL, WU] contains all the wanted eigenvalues.
  281: *        It is either given by the user or computed in DLARRE.
  282:          WL = VL
  283:          WU = VU
  284:       ELSEIF( INDEIG ) THEN
  285: *        We do not reference IL, IU in the cases RANGE = 'V','A'
  286:          IIL = IL
  287:          IIU = IU
  288:       ENDIF
  289: *
  290:       INFO = 0
  291:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  292:          INFO = -1
  293:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  294:          INFO = -2
  295:       ELSE IF( N.LT.0 ) THEN
  296:          INFO = -3
  297:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
  298:          INFO = -7
  299:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
  300:          INFO = -8
  301:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
  302:          INFO = -9
  303:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  304:          INFO = -13
  305:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  306:          INFO = -17
  307:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  308:          INFO = -19
  309:       END IF
  310: *
  311: *     Get machine constants.
  312: *
  313:       SAFMIN = DLAMCH( 'Safe minimum' )
  314:       EPS = DLAMCH( 'Precision' )
  315:       SMLNUM = SAFMIN / EPS
  316:       BIGNUM = ONE / SMLNUM
  317:       RMIN = SQRT( SMLNUM )
  318:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  319: *
  320:       IF( INFO.EQ.0 ) THEN
  321:          WORK( 1 ) = LWMIN
  322:          IWORK( 1 ) = LIWMIN
  323: *
  324:          IF( WANTZ .AND. ALLEIG ) THEN
  325:             NZCMIN = N
  326:          ELSE IF( WANTZ .AND. VALEIG ) THEN
  327:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
  328:      $                            NZCMIN, ITMP, ITMP2, INFO )
  329:          ELSE IF( WANTZ .AND. INDEIG ) THEN
  330:             NZCMIN = IIU-IIL+1
  331:          ELSE
  332: *           WANTZ .EQ. FALSE.
  333:             NZCMIN = 0
  334:          ENDIF
  335:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
  336:             Z( 1,1 ) = NZCMIN
  337:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
  338:             INFO = -14
  339:          END IF
  340:       END IF
  341: 
  342:       IF( INFO.NE.0 ) THEN
  343: *
  344:          CALL XERBLA( 'DSTEMR', -INFO )
  345: *
  346:          RETURN
  347:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
  348:          RETURN
  349:       END IF
  350: *
  351: *     Handle N = 0, 1, and 2 cases immediately
  352: *
  353:       M = 0
  354:       IF( N.EQ.0 )
  355:      $   RETURN
  356: *
  357:       IF( N.EQ.1 ) THEN
  358:          IF( ALLEIG .OR. INDEIG ) THEN
  359:             M = 1
  360:             W( 1 ) = D( 1 )
  361:          ELSE
  362:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
  363:                M = 1
  364:                W( 1 ) = D( 1 )
  365:             END IF
  366:          END IF
  367:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  368:             Z( 1, 1 ) = ONE
  369:             ISUPPZ(1) = 1
  370:             ISUPPZ(2) = 1
  371:          END IF
  372:          RETURN
  373:       END IF
  374: *
  375:       IF( N.EQ.2 ) THEN
  376:          IF( .NOT.WANTZ ) THEN
  377:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
  378:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  379:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
  380:          END IF
  381:          IF( ALLEIG.OR.
  382:      $      (VALEIG.AND.(R2.GT.WL).AND.
  383:      $                  (R2.LE.WU)).OR.
  384:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
  385:             M = M+1
  386:             W( M ) = R2
  387:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  388:                Z( 1, M ) = -SN
  389:                Z( 2, M ) = CS
  390: *              Note: At most one of SN and CS can be zero.
  391:                IF (SN.NE.ZERO) THEN
  392:                   IF (CS.NE.ZERO) THEN
  393:                      ISUPPZ(2*M-1) = 1
  394:                      ISUPPZ(2*M) = 2
  395:                   ELSE
  396:                      ISUPPZ(2*M-1) = 1
  397:                      ISUPPZ(2*M) = 1
  398:                   END IF
  399:                ELSE
  400:                   ISUPPZ(2*M-1) = 2
  401:                   ISUPPZ(2*M) = 2
  402:                END IF
  403:             ENDIF
  404:          ENDIF
  405:          IF( ALLEIG.OR.
  406:      $      (VALEIG.AND.(R1.GT.WL).AND.
  407:      $                  (R1.LE.WU)).OR.
  408:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
  409:             M = M+1
  410:             W( M ) = R1
  411:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  412:                Z( 1, M ) = CS
  413:                Z( 2, M ) = SN
  414: *              Note: At most one of SN and CS can be zero.
  415:                IF (SN.NE.ZERO) THEN
  416:                   IF (CS.NE.ZERO) THEN
  417:                      ISUPPZ(2*M-1) = 1
  418:                      ISUPPZ(2*M) = 2
  419:                   ELSE
  420:                      ISUPPZ(2*M-1) = 1
  421:                      ISUPPZ(2*M) = 1
  422:                   END IF
  423:                ELSE
  424:                   ISUPPZ(2*M-1) = 2
  425:                   ISUPPZ(2*M) = 2
  426:                END IF
  427:             ENDIF
  428:          ENDIF
  429:          RETURN
  430:       END IF
  431: 
  432: *     Continue with general N
  433: 
  434:       INDGRS = 1
  435:       INDERR = 2*N + 1
  436:       INDGP = 3*N + 1
  437:       INDD = 4*N + 1
  438:       INDE2 = 5*N + 1
  439:       INDWRK = 6*N + 1
  440: *
  441:       IINSPL = 1
  442:       IINDBL = N + 1
  443:       IINDW = 2*N + 1
  444:       IINDWK = 3*N + 1
  445: *
  446: *     Scale matrix to allowable range, if necessary.
  447: *     The allowable range is related to the PIVMIN parameter; see the
  448: *     comments in DLARRD.  The preference for scaling small values
  449: *     up is heuristic; we expect users' matrices not to be close to the
  450: *     RMAX threshold.
  451: *
  452:       SCALE = ONE
  453:       TNRM = DLANST( 'M', N, D, E )
  454:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  455:          SCALE = RMIN / TNRM
  456:       ELSE IF( TNRM.GT.RMAX ) THEN
  457:          SCALE = RMAX / TNRM
  458:       END IF
  459:       IF( SCALE.NE.ONE ) THEN
  460:          CALL DSCAL( N, SCALE, D, 1 )
  461:          CALL DSCAL( N-1, SCALE, E, 1 )
  462:          TNRM = TNRM*SCALE
  463:          IF( VALEIG ) THEN
  464: *           If eigenvalues in interval have to be found,
  465: *           scale (WL, WU] accordingly
  466:             WL = WL*SCALE
  467:             WU = WU*SCALE
  468:          ENDIF
  469:       END IF
  470: *
  471: *     Compute the desired eigenvalues of the tridiagonal after splitting
  472: *     into smaller subblocks if the corresponding off-diagonal elements
  473: *     are small
  474: *     THRESH is the splitting parameter for DLARRE
  475: *     A negative THRESH forces the old splitting criterion based on the
  476: *     size of the off-diagonal. A positive THRESH switches to splitting
  477: *     which preserves relative accuracy.
  478: *
  479:       IF( TRYRAC ) THEN
  480: *        Test whether the matrix warrants the more expensive relative approach.
  481:          CALL DLARRR( N, D, E, IINFO )
  482:       ELSE
  483: *        The user does not care about relative accurately eigenvalues
  484:          IINFO = -1
  485:       ENDIF
  486: *     Set the splitting criterion
  487:       IF (IINFO.EQ.0) THEN
  488:          THRESH = EPS
  489:       ELSE
  490:          THRESH = -EPS
  491: *        relative accuracy is desired but T does not guarantee it
  492:          TRYRAC = .FALSE.
  493:       ENDIF
  494: *
  495:       IF( TRYRAC ) THEN
  496: *        Copy original diagonal, needed to guarantee relative accuracy
  497:          CALL DCOPY(N,D,1,WORK(INDD),1)
  498:       ENDIF
  499: *     Store the squares of the offdiagonal values of T
  500:       DO 5 J = 1, N-1
  501:          WORK( INDE2+J-1 ) = E(J)**2
  502:  5    CONTINUE
  503: 
  504: *     Set the tolerance parameters for bisection
  505:       IF( .NOT.WANTZ ) THEN
  506: *        DLARRE computes the eigenvalues to full precision.
  507:          RTOL1 = FOUR * EPS
  508:          RTOL2 = FOUR * EPS
  509:       ELSE
  510: *        DLARRE computes the eigenvalues to less than full precision.
  511: *        DLARRV will refine the eigenvalue approximations, and we can
  512: *        need less accurate initial bisection in DLARRE.
  513: *        Note: these settings do only affect the subset case and DLARRE
  514:          RTOL1 = SQRT(EPS)
  515:          RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
  516:       ENDIF
  517:       CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
  518:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
  519:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
  520:      $             WORK( INDGP ), IWORK( IINDBL ),
  521:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
  522:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  523:       IF( IINFO.NE.0 ) THEN
  524:          INFO = 10 + ABS( IINFO )
  525:          RETURN
  526:       END IF
  527: *     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
  528: *     part of the spectrum. All desired eigenvalues are contained in
  529: *     (WL,WU]
  530: 
  531: 
  532:       IF( WANTZ ) THEN
  533: *
  534: *        Compute the desired eigenvectors corresponding to the computed
  535: *        eigenvalues
  536: *
  537:          CALL DLARRV( N, WL, WU, D, E,
  538:      $                PIVMIN, IWORK( IINSPL ), M,
  539:      $                1, M, MINRGP, RTOL1, RTOL2,
  540:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
  541:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
  542:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  543:          IF( IINFO.NE.0 ) THEN
  544:             INFO = 20 + ABS( IINFO )
  545:             RETURN
  546:          END IF
  547:       ELSE
  548: *        DLARRE computes eigenvalues of the (shifted) root representation
  549: *        DLARRV returns the eigenvalues of the unshifted matrix.
  550: *        However, if the eigenvectors are not desired by the user, we need
  551: *        to apply the corresponding shifts from DLARRE to obtain the
  552: *        eigenvalues of the original matrix.
  553:          DO 20 J = 1, M
  554:             ITMP = IWORK( IINDBL+J-1 )
  555:             W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
  556:  20      CONTINUE
  557:       END IF
  558: *
  559: 
  560:       IF ( TRYRAC ) THEN
  561: *        Refine computed eigenvalues so that they are relatively accurate
  562: *        with respect to the original matrix T.
  563:          IBEGIN = 1
  564:          WBEGIN = 1
  565:          DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
  566:             IEND = IWORK( IINSPL+JBLK-1 )
  567:             IN = IEND - IBEGIN + 1
  568:             WEND = WBEGIN - 1
  569: *           check if any eigenvalues have to be refined in this block
  570:  36         CONTINUE
  571:             IF( WEND.LT.M ) THEN
  572:                IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
  573:                   WEND = WEND + 1
  574:                   GO TO 36
  575:                END IF
  576:             END IF
  577:             IF( WEND.LT.WBEGIN ) THEN
  578:                IBEGIN = IEND + 1
  579:                GO TO 39
  580:             END IF
  581: 
  582:             OFFSET = IWORK(IINDW+WBEGIN-1)-1
  583:             IFIRST = IWORK(IINDW+WBEGIN-1)
  584:             ILAST = IWORK(IINDW+WEND-1)
  585:             RTOL2 = FOUR * EPS
  586:             CALL DLARRJ( IN,
  587:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
  588:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
  589:      $                   WORK( INDERR+WBEGIN-1 ),
  590:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
  591:      $                   TNRM, IINFO )
  592:             IBEGIN = IEND + 1
  593:             WBEGIN = WEND + 1
  594:  39      CONTINUE
  595:       ENDIF
  596: *
  597: *     If matrix was scaled, then rescale eigenvalues appropriately.
  598: *
  599:       IF( SCALE.NE.ONE ) THEN
  600:          CALL DSCAL( M, ONE / SCALE, W, 1 )
  601:       END IF
  602: *
  603: *     If eigenvalues are not in increasing order, then sort them,
  604: *     possibly along with eigenvectors.
  605: *
  606:       IF( NSPLIT.GT.1 ) THEN
  607:          IF( .NOT. WANTZ ) THEN
  608:             CALL DLASRT( 'I', M, W, IINFO )
  609:             IF( IINFO.NE.0 ) THEN
  610:                INFO = 3
  611:                RETURN
  612:             END IF
  613:          ELSE
  614:             DO 60 J = 1, M - 1
  615:                I = 0
  616:                TMP = W( J )
  617:                DO 50 JJ = J + 1, M
  618:                   IF( W( JJ ).LT.TMP ) THEN
  619:                      I = JJ
  620:                      TMP = W( JJ )
  621:                   END IF
  622:  50            CONTINUE
  623:                IF( I.NE.0 ) THEN
  624:                   W( I ) = W( J )
  625:                   W( J ) = TMP
  626:                   IF( WANTZ ) THEN
  627:                      CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  628:                      ITMP = ISUPPZ( 2*I-1 )
  629:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
  630:                      ISUPPZ( 2*J-1 ) = ITMP
  631:                      ITMP = ISUPPZ( 2*I )
  632:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
  633:                      ISUPPZ( 2*J ) = ITMP
  634:                   END IF
  635:                END IF
  636:  60         CONTINUE
  637:          END IF
  638:       ENDIF
  639: *
  640: *
  641:       WORK( 1 ) = LWMIN
  642:       IWORK( 1 ) = LIWMIN
  643:       RETURN
  644: *
  645: *     End of DSTEMR
  646: *
  647:       END

CVSweb interface <joel.bertrand@systella.fr>